Russian
| English
"Куда идет мир? Каково будущее науки? Как "объять необъятное", получая образование - высшее, среднее, начальное? Как преодолеть "пропасть двух культур" - естественнонаучной и гуманитарной? Как создать и вырастить научную школу? Какова структура нашего познания? Как управлять риском? Можно ли с единой точки зрения взглянуть на проблемы математики и экономики, физики и психологии, компьютерных наук и географии, техники и философии?"

«СИНЕРГЕТИКА В СОВРЕМЕННОМ ЕСТЕСТВОЗНАНИИ» 
Р.Г. Баранцев

Опубликовано в: Что такое синергетика?

Глава 2. Смена структур в естествознании
В традиционной парадигме элементарные структуры имеют вид бинарных оппозиций: вещество-поле, дискретность-непрерывность, конечность-бесконечность и т.п. Рассмотрим эти диады, обращая внимание на периодическую смену доминант. В разгаре борьбы за первенство наиболее отчётливо проявляется дополнительность сторон оппозиции и формируются благоприятные условия для обнаружения мерообразующей третьей компоненты, обеспечивающей целостность.

2.1. Вещество-поле.

2.1.1. Элементарные частицы.
Вещество определяется в физике как вид материи, обладающий массой покоя. При этом опираются на те представления о материи, массе и покое, которые существуют на интуитивном уровне.
В нормальных (человеческих) условиях (T ? 300 K, p ? 1 атм.) вещество встречается в твёрдом, жидком и газообразном состоянии. Это так называемые агрегатные состояния вещества (лат. aggrego — присоединяю). Они различаются по характеру молекулярного теплового движения. Переходы между ними сопровождаются скачкообразными изменениями физических свойств. При больших отклонениях от нормальных условий возможны иные состояния. Например, плазма: электроны и «голые» ядра при очень высоких температурах.
Мир молекул (molecula — уменьшит. от лат. moles — масса) приоткрыл много интересного в природе вещества, и физики устремились дальше вглубь материи на уровень атомов, которые сначала казались неделимыми, откуда и произошло их название (греч. atomos — неделимый). Однако атомы не оправдали своего названия. Оказалось, что они состоят из массивного положительно заряженного ядра, вокруг которого вращаются отрицательно заряженные электроны, образующие внешнюю «оболочку» атома. Заряд — величина, определяющая интенсивность электромагнитного взаимодействия. У простейшего атома водорода имеется всего один электрон, масса которого 10-30 кг, в то время как масса ядра 10-27 кг. Радиус электрона 10-18 м, ядра — 10-15 м, атома — 10-10 м, так что фактически атом почти весь состоит из … пустоты.
«Покопавшись» в ядре, физики обнаружили, что оно состоит из протонов (греч. protos — первый), заряженных положительно, и нейтронов (лат. neuter — ни тот, ни другой), не имеющих заряда. Протон был открыт Э.Резерфордом в 1919 г., нейтрон — Дж.Чэдвиком в 1932 г., электрон — Дж.Дж.Томсоном ещё в 1897 г. Тяжёлые частицы (протон и нейтрон), составляющие ядро, называются нуклонами (лат. nucleus — ядро).
В 1928 году Поль Дирак предсказал существование частицы, противоположной по свойствам электрону. В 1936 такую частицу, заряженную положительно, экспериментально обнаружил К.Андерсон. Её назвали позитрон (лат. positivus — положительный). Антипротон был открыт в 1955 г., антинейтрон — в 1956 г. Заряд у антинейтрона, как и у нейтрона, отсутствует, но его магнитный момент имеет противоположный знак. При встрече частицы с античастицей происходит их аннигиляция, взаимоуничтожение, в результате чего рождаются другие частицы. Например, электрон и позитрон превращаются в два фотона (e- + e+ > 2?). Фотон как частица света (греч. phot?s — свет) был введён в теоретическую физику А.Эйнштейном в 1905 г.
В 1935 г. Х.Юкава предсказал существование частиц с промежуточной массой (легче нуклона, тяжелее электрона). Их назвали мезонами (греч. mesos — средний, промежуточный) и обнаружили экспериментально в 1947 г. Эти частицы появляются, например, при аннигиляции нуклонов и антинуклонов, присутствуют в космических лучах, существенно используются в ядерной физике.
Семья элементарных частиц росла и росла и сейчас насчитывает более 300 видов. Конечно, их всё время стараются упорядочить. Пока преобладает комбинативная система с такими признаками как масса, время жизни и спин. По массе различаются барионы (нуклоны), мезоны, лептоны (электроны, нейтрино) и фотон, вообще не имеющий массы покоя. По времени жизни: стабильные частицы (электрон, протон, фотон, нейтрино), квазистабильные (нейтрон) и резонансы. Термин «спин» (англ. spin -вращение) характеризует собственный момент импульса частицы. Он может принимать значения, кратные ћ или ћ/2. Частицы с полуцелым спином, фермионы (нуклоны, лептоны) подчиняются принципу Паули, согласно которому в одном состоянии может находиться только один фермион. Частицы с целым спином, бозоны (мезоны, фотоны) не ограничены этим правилом и могут «уживаться в коммунальных квартирах». Заряд у всех элементарных частиц оказывается кратным заряду электрона e .
Сравнительное изучение элементарных частиц наводило на мысль, что они тоже, как и атомы, не совсем элементарны, а состоят из ещё более мелких «кирпичиков» материи. В 1964 г. М.Гелл-Манн и Дж.Цвейг выдвинули гипотезу кварков. Термин этот был взят из романа Дж.Джойса «Поминки по Финнегану», где его произносит человек, поражённый безумием. Теоретически почти все элементарные частицы можно рассматривать как комбинации кварков. Например, барионы состоят из трёх кварков, лептоны — из кварка и антикварка. Типы кварков названы ароматами. Их шесть: up — верхний, down — нижний, strange — странный, charmed — очарованный, beauty — прелестный, truth — истинный. Каждый может находиться в трёх состояниях, называемых цветами: жёлтом, красном, синем. Размеры кварков примерно в 10 раз меньше нуклона, спин — полуцелый, а заряды должны быть дробными. Однако в свободном виде они до сих пор экспериментально не обнаружены. Называя это феномен принципом удержания, физики говорят о центральной свободе и периферийном рабстве кварков.

2.1.2. Типы взаимодействий
Переходя от элементов к структуре, т.е. к совокупности связей, рассмотрим взаимодействия между частицами. Природа взаимодействий может быть различной. В настоящее время физики различают 4 типа фундаментальных взаимодействий. Два из них: гравитационное (лат. gravitas — тяжесть) и электромагнитное ( греч. elektron — янтарь, Magnetis — город, где нашли магнитный железняк) были известны давно, поскольку заметно проявляются в человеческом масштабе.
Изучение строения атомного ядра привело к открытию нового типа взаимодействия, которое назвали сильным, так как в ядерных масштабах (~10-15 м) оно на два-три порядка превосходит электромагнитное и позволяет объяснить, почему одинаково заряженные протоны не разлетаются. Затем был открыт 4-й тип взаимодействия, ответственный за распад элементарных частиц и взаимодействия с участием нейтрино. По интенсивности оно находится между электромагнитным и гравитационным. Последнее в атомном масштабе наименее ощутимо.
Механизм взаимодействия принято трактовать как обмен частицами-посредниками, несущими элементарные порции энергии — кванты. Считается, что каждое взаимодействие переносится определённым типом бозонов. Квант тяготения — гравитон — экспериментально пока не обнаружен. В слабых взаимодействиях посредниками являются мезоны, в электромагнитных — фотоны. Сильные взаимодействия осуществляются глюонами (англ. glue — клей), которые несут в себе столь большую энергию, что крепко удерживают кварки внутри частицы.
Теории, построенные для каждого из 4-х типов взаимодействий, получились разными, и физикам это не нравилось. Хотелось их объединить. Хорошим примером служила единая теория электромагнитных взаимодействий, построенная Дж.Максвеллом ещё в середине 19-го века. На рубеже 60-х — 70-х годов XX столетия усилиями трёх физиков (С.Вайнберг, Ш.Глэшоу, А.Салам) удалось объединить теории электромагнитного и слабого взаимодействий. Квант, переносящий электрослабое взаимодействие, может находиться в 4-х состояниях, одно из которых фотонное, а три других обладают большой массой. Такое объединение требует энергий порядка 1011 эВ, что соответствует температурам, в 4 триллиона раз выше комнатной.
Сейчас физики заняты построением теории Большого объединения, которое включило бы сильные взаимодействия. Искомый квант-посредник должен быть весьма многомерным, а энергия, необходимая для реализации этого объединения, на современных установках недостижима. Проект Суперобъединения, захватывающего и гравитацию, существует как великая мечта.

2.1.3.Масса, сила, поле.
Следуя системному подходу, от элементов (частиц) и связей (взаимодействий) нужно переходить к субстанциальному аспекту, характеризующему целостность, и осознанию единства всей системы. Для этого нам понадобится более основательное освоение понятий массы, силы и поля.
Масса определяется в физике как мера инерционных и гравитационных свойств материи. Инерция — свойство сохранять скорость движения при отсутствии внешних воздействий. Сила — мера воздействия, причина изменения скорости движения. Масса m, сила F и ускорение a , как известно, связаны вторым законом Ньютона F = m•a.
Дав качественное определение массы и силы как меры некоторых свойств и причин, нужно указать способы количественного определения этих мер. Уравнения Ньютона для этих целей, на первый взгляд, недостаточно, так как в нём одном имеем две неизвестных пока величины: m и F (измерять ускорение мы умеем). Кроме того, это равенство претендует на большее, чем количественное определение массы или силы. Оно утверждает, что между ними, уже каким-то образом измеренными, существует универсальная связь. Покажем, однако, что на основе закона Ньютона достигаются все эти три цели как раз благодаря универсальности, т.е. справедливости его для любых масс и сил.
Пусть имеются массы mi , i = 1,2,3,…, и силы Fj , j = 1,2,3,… . Запишем закон Ньютона в виде aij = Fj / mi , что означает, что j-я сила придаёт i-й массе ускорение aij . Изобразим матрицу, в первой строчке которой меняется j при i = 1, а в первом столбце меняется i при j = 1. Приняв m1 за единицу измерения масс, по первой строчке можем измерить все силы. Зная F1 , по первому столбцу измерим прочие массы. Вся остальная часть матрицы представляет закон Ньютона, связывающий измеряемые величины a, m и F.
Оглянемся теперь на тот факт, что в определении массы говорится не только об инерционных, но и о гравитационных свойствах материи. Последние находят выражение в законе всемирного тяготения F = =Gm1m2r -2, где m1 и m2 — две массы, r — расстояние между ними, F — сила притяжения, G — гравитационная постоянная. Следуя определению, измерять массы можно на основе и этого равенства, причём ниоткуда не следует, что численные значения получатся теми же самыми, как по предыдущему способу. Однако фактически они совпадают. Обнаруженное равенство инерционной и гравитационной масс носит название принципа эквивалентности. Объяснение достигается на более глубоком уровне изучения свойств материи.
Возьмёмся, наконец, за осмысление понятия поля. Разумеется, в физике, а не в сельском хозяйстве. Первые шаги к освоению этого понятия были сделаны, когда пришлось воспринимать гравитацию как силу, действующую на расстоянии. Это было что-то таинственное. Ньютон писал, что сила есть qualitas occulta (лат. occultus — скрытый, сокровенный, тайный; qualitas — качество, свойство). С открытием электромагнетизма появилось представление о силовых полях, подкрепляемое картинами силовых линий, овеществляемых с помощью металлического порошка. Но, как и гравитационное, электромагнитное поле рассматривалось как нечто вторичное, порождаемое веществом: телами, зарядами, магнитами. Даже в энциклопедическом словаре 1983 года издания утверждается, что источниками полей являются частицы.
Концепция первичности вещества и вторичности поля, конечно, была связана с материалистической доминантой физики. Однако последнее время в оппозиции вещество-поле на первый план всё больше выдвигается понятие поля, а частицы вещества рассматриваются как некие сгустки, особенности, сингулярности, порождаемые полем. Маятник бинарной парадигмы качнулся в другую сторону.
Само поле определяется как вид материи с нулевой массой покоя или как вид материи с бесконечным числом степеней свободы. Рациональное понимание таких формулировок, несмотря на навязчивый редукционизм, встречает затруднения и поневоле приходится обращаться к интуиции. Существенным подспорьем тут служит концепция физического вакуума, под которым понимается основное, т.е. энергетически низшее состояние поля. Иными словами, это материальная среда, изотропно заполняющая всё пространство, ненаблюдаемая в невозмущённом состоянии и проявляющаяся через флуктуации.
Понятие вакуума воскрешает в памяти существовавшее когда-то представление об эфире как гипотетической всепроникающей среде, переносящей электромагнитное воздействие. Механическая интерпретация эфира встретилась с большими трудностями, которые привели к отказу от механических полевых моделей уже к концу 19-го века. В последнее время эта гипотеза возрождается под именем планкеонного эфира [52].
Другая ассоциация — с восточным представлением о великой Пустоте, представлением, вытекающим из признания отсутствия независимости, из невозможности самодостаточного существования, так что Пустота является общей исходной природой реальности [97].
Итак, смена доминант, характерная для переходного периода в бинарной парадигме, происходит и в оппозиции вещество-поле. На таком этапе динамического баланса имеется больше шансов увидеть третий фактор, ведущий к целостности. В качестве гипотезы можно предложить следующую триаду фундаментальных аспектов материи:

поле
/ \
вещество —- сила

2.2. Дискретность-непрерывность.

2.2.1. Концепция сплошной среды.
Термин «дискретность» (лат. discretus — разделённый, прерывистый) характеризует пространственно-временную отграниченность элементов и состояний объекта. «Непрерывность» понимается как взаимосвязь элементов и состояний, неразрывная связь в бытии и переход в становлении. Математическое определение непрерывности: функция f(x) непрерывна в точке xo , если f(x) > f(xo) при x > xo.
Древнегреческий философ Анаксагор ( ок. 500-428 до Р.Х.) трактовал непрерывность как бесконечную делимость, но уже ставил вопрос: сохраняются ли при этом свойства целого?
Готфрид Вильгельм Лейбниц (1646-1716), развивая учение о «предустановленной гармонии», утверждал: «Природа не делает скачков». Представление о непрерывности казалось предпочтительным.
Однако физики, исследуя микромир, встретились с дискретностью материи: минимальный электрический заряд, конечные порции энергии — кванты (лат. quantum — сколько) и т.п. Философам пришлось перестраиваться. Появились концепции дискретного пространства-времени.
Компромиссный вариант предложил А.Н.Вяльцев [98]: сущность непрерывна, явления дискретны. Иными словами, непрерывность — понятие онтологии, дискретность — гносеологии. Но можно предположить и обратное (напр., у Кьёркегора): мир по своей природе дискретен, а познавательные модели непрерывны, сглажены. Эта альтернатива нашла выражение в одной из антиномий (греч. antinomia — противоречие в законе), сформулированных И.Кантом (1724-1804): каждая сложная субстанция состоит из простых частей — не существует ничего простого. Любое из этих положений можно взять за основу.
Принцип дополнительности означает, что вопрос не должен ставиться в плане логических исключений. И дискретное, и непрерывное — модели, не исключающие, а дополняющие одна другую. По мнению А.И.Панченко [99], обе они являются идеализациями, относящимися к гносеологии.
Уместно отметить связь рассматриваемой оппозиции с диадой «вещество-поле». В энциклопедическом словаре 1983 года [100] вещество определяется как вид материи, состоящий из дискретных образований. Следовательно, поле ассоциируется с непрерывностью.
Тем не менее, существуют и модели вещественного континуума (лат. continuus — сплошной, непрерывный). Рассмотрим подробнее, как формируется концепция сплошной среды. Пусть ?V — некоторый объём, содержащий частицы вещества, суммарная масса которых равна ?m. Отношение ?m/?V, характеризующее плотность среды как массу в единице объёма, вообще говоря, зависит от величины ?V. Эта зависимость тем заметнее, чем более неоднородна среда в пределах ?V. С уменьшением объёма зависимость ослабевает и величина ?m/?V обнаруживает тенденцию стремиться к некоторому пределу, который и принимают за значение плотности среды ? в той точке, куда сжимается ?V. Однако фактически этот процесс не доводят до конца, так как зависимость от величины объёма появляется снова, когда число частиц в нём становится невелико. Важно, что существует масштабный интервал ?V, в пределах которого отношение ?m/?V остаётся постоянным. Запись ? = lim(?m/?V) при ?V > 0 означает, что обнаруженная закономерность экстраполируется по ?V вплоть до нуля. Это позволяет использовать математику бесконечно-малых величин, т.е. аппарат дифференциального и интегрального исчисления.
Изложенная концепция широко применяется в гидроаэродинамике, теории упругости, теории пластичности и в других областях механики сплошных сред. Наряду с плотностью ? таким же образом вводятся давление p , температура T, вектор скорости u и другие характеристики среды. Они называются макропараметрами, потому что определяются в масштабе ?V, большом по сравнению с размерами молекул. Сверху объём ?V ограничен характерными размерами неоднородностей этих макровеличин. Типичный масштабный интервал формирования целостных параметров макромира можно оценить как 10-8 — 10-3 м, т.е. примерно в 5 порядков.
Существуют и другие масштабные уровни организации материи, допускающие введение континуальных моделей, как в микро-, так и в мегамире. Они удалены от человеческих масштабов, но доступны наблюдению с помощью приборов. Размах масштабной «лестницы расстояний» [101] — примерно 42 порядка, от 10-15 м до 1027 м. Некоторые характерные ступени: размер атома — 10-10 м, толщина волоса — 10-4 м, человек — 1 м, расстояние до горизонта — 104 м, диаметр Земли — 107 м, расстояние до Солнца — 1011 м, расстояние до Сириуса — 1017 м, размер Галактики — 1021 м. В микромире выделяются атомный и ядерный уровни, в мегамире — планетарный, звёздный, галактический. Между уровнями существуют связи, влияние одних на другие. Исследование вертикальных переходных слоёв — интереснейшая проблема современности.

2.2.2. Симметрия и законы сохранения.
В ходе попыток дать более строгие определения непрерывности и дискретности сложились следующие характеристики континуума: бесконечная делимость, метрическая аморфность, связность, неразличимость элементов, несчётность элементов. Если дискретность определять через отрицание некоторых из этих свойств, то возможны разные варианты, т.е. неоднозначность. Например, метрическая структурность при бесконечной делимости.
Представление о непрерывном пространстве и времени с характерными свойствами континуума ведёт к очень важным следствиям. Обратим внимание на свойства, объединяемые понятием симметрии (греч. symmetria — соразмерность). Как свидетельствует американский физик Р.Фейнман: «Для человеческого разума симметрия обладает, по-видимому, совершенно особой притягательной силой. Нам нравится смотреть на проявление симметрии в природе, на идеально симметричные сферы планет или Солнца, на симметричные кристаллы, на снежинки, наконец, на цветы, которые почти симметричны».
Немецкий математик Г.Вейль называет симметричным такой предмет, который можно как-то изменять, получая в результате то же, с чего вы начали. Иными словами, симметрия — это инвариантность (неизменность) объекта относительно каких-то преобразований. Обычному представлению такое определение не противоречит, но уточняет его, связывая с определёнными классами преобразований, например, такими, как перенос, поворот, зеркальное отражение и пр. В этом смысле появляется также возможность говорить о симметрии физических законов, совершая над ними различные преобразования, не нарушающие этих законов.
Континуальные свойства пространства и времени позволяют утверждать,
что физические законы не должны зависеть от того, в какой момент времени мы их рассматриваем, в какой точке пространства и в каком направлении. Это утверждение кажется тривиальным, но из него следует весьма нетривиальный результат: каждой симметрии соответствует сохранение некоторой физической величины. Такую теорему доказала в 1918 году немецкий математик Эмми Нётер (1882-1935).
Из однородности пространства, допускающей перенос, следует закон сохранения импульса p, который в классической механике записывается как произведение массы частицы m на её скорость u, т.е. p = m•u. Изотропность пространства влечёт за собой возможность поворотов, откуда следует закон сохранения момента импульса M = r ? mu, где r — радиус-вектор частицы, а символ ? означает векторное произведение. Из однородности времени, допускающей временной сдвиг, вытекает закон сохранения энергии E = T + V, где T = mu2/2 — кинетическая энергия, V = V(r) — потенциальная энергия. Современной физике известны и другие свойства симметрии, вместе с соответствующими законами сохранения.