15 марта, 2007 г.
С.Т. Захидов
Московский государственный университет им. М.В.Ломоносова
Институт биологии развития им.Н.К.Кольцова, Российская академия наук
Атомистика как естественно-научное и философское учение о дискретном, зернистом строении материи, ее ступенчатой организации, уходит глубокими корнями во времена Древнего Востока и Древней Греции. Именно здесь впервые складывались представления об атомном, прерывистом строении вещества, допускалась мысль о существовании мельчайших, неделимых частиц, столкновение которых в пустоте, порождают вихрь, дающий начало мирозданию. Атомистами были Фалес, Гераклит, Анаксагор, Эмпедокл, Левкипп и, наконец, выдающийся ученый-энциклопедист и философ-материалист, “размышлявший обо всем”, Демокрит. Представители древнегреческой философии, по образному выражению Герцена, не шутили с атомами; они видели бытие в каждой точке, атомы для них были мыслью, истиной. Все возникает из пустоты и атомов
Моему другу Варваре Джамбор-Каграмановой посвящается
Океан, состоящий из капель, велик,
Из пылинок слагается материк.
Омар Хайям
Природа рассыпчата.
В ней все молекулярно, даже то, что нам
кажется совершенно не имеющим частей и различия.
А.И.Герцен
…естествоиспытатель применяет атомное учение,
прежде всего как способ анализировать явления природы.
Д.И.Менделеев
Атомизм… соблазнителен
А.Пуанкаре
Без участия атомизма классическая структура невозможна.
И.А.Рапопорт
ИСТОРИЯ РАЗВИТИЯ АТОМИСТИКИ
Атомистика как естественно-научное и философское учение о дискретном, зернистом строении материи, ее ступенчатой организации, уходит глубокими корнями во времена Древнего Востока и Древней Греции. Именно здесь впервые складывались представления об атомном, прерывистом строении вещества, допускалась мысль о существовании мельчайших, неделимых частиц, столкновение которых в пустоте, порождают вихрь, дающий начало мирозданию. Атомистами были Фалес, Гераклит, Анаксагор, Эмпедокл, Левкипп и, наконец, выдающийся ученый-энциклопедист и философ-материалист, “размышлявший обо всем”, Демокрит. Представители древнегреческой философии, по образному выражению Герцена, не шутили с атомами; они видели бытие в каждой точке, атомы для них были мыслью, истиной. Все возникает из пустоты и атомов.
- Из ничего ничто произойти не может, ничто существующее не может быть уничтожено и вечное изменение состоит лишь в соединении и разделении.
- Ничто не случайно, на все есть причина и необходимость.
- Кроме атомов и пустоты, все остальное лишь суждение, а не существование.
- Атомы бесконечные по числу и по форме, своими движениями, столкновениями и возникающими круговращениями образуют видимый мир.
- Различие предметов зависит только от различия числа, формы и порядка атомов, из которых они образованы, но не от качественного различия атомов, действующих друг на друга только давлением и ударами.
- Дух, как и огонь, состоит из мелких, круглых, гладких, наиболее легко подвижных и легко и всюду проникающих атомов, движение которых составляет жизнь.
- Все различие между жизнью и смертью сводится к различию в количестве присутствующих в теле круглых атомов.
Демокритовская идея “в начале была частица” решала задачу построения теоретического знания о структуре материи, ее составных элементов и всеобщих связей. Атомы Демокрита, как говорится, это первый исторический образ нечто постоянного, вечного, неизменного, неделимого, неразрушимого никакими воздействиями. Или, переходя на языке термодинамики, нечто с нулевым уровнем энтропии – уровнем, на котором ничего не происходит и нет никакого развития.
Потом Эпикур добавит, что атомы отличаются друг от друга тяжестью, и движутся в пространстве, чуть-чуть отклоняясь от прямой линии, что, по мнению Маркса, существенно изменило всю внутреннюю конструкцию мира атомов. В этой связи надо признать, что эпикуровское отклонение атома от своего прямолинейного пути без всякого побуждения внешней причиной чем-то напоминает современную теорию детерминированного (динамического) хаоса. Эпикур рисует более широкую картину мироздания: при начале образования мира (а таких миров бесчисленное множество – и сходных с нашими и несходных) в нем возникают круговороты, в основе которых лежат атомные вихри, образующиеся из движений и соединений атомов.
Другой древнегреческий философ, современник Демокрита – Платон (Аристокл), не был атомистом, однако вслед за Эмпедоклом признал возможность существования нескольких разновидностей мельчайших частиц, в частности, 4 основных элементов- “родоначальников” – земли, воды, воздуха и огня, отождествляя их с правильными геометрическими телами – кубом, октаэдром, икосаэдром, тетраэдром, а также пятого элемента, который бог использовал для создания Вселенной. Правда, Платон не считал все эти элементы-частицы чем-то данными раз и навсегда, неизменными и неделимыми.
Идеями атомистики пропитана и философская поэма жившего чуть более 2000 лет тому назад величайшего древнеримского поэта и философа, одного из создателей латинского литературного языка Лукреция Кара “О природе вещей” (“Dererum nature”). В этом поэтическом произведении обосновывалось существование атомов, выдвигались аргументы в пользу дискретности вещества и говорилось о том, что атомы имеют не только форму и положение, но и вес, что они несутся в бесконечной пустоте, перемещаются в мировом пространстве, встречаясь и летя вместе, и что их непрерывное движение на самом деле складывается из прерывистых (дискретных) возникновений и исчезновений; многообразие вещей зависит от характера сцепления атомов. С позиции лукрециевской эстетики, чем атомы-образы глаже и круглее, тем воздействие их на организм нежнее и прекраснее, а чем грубее и корявее, тем безобразнее и образы сознания. Лукреций, как и Эпикур, говорит, что атомы, падая по прямой линии, отклоняются, и в результате этих отклонений атомы сталкиваются и образуют вещи, в то время как другие теряются в неизмеримой пустоте. По Лукрецию и бог атомистичен, состоит из комбинации атомов и пустот.
Итак, античная мысль провозгласила: только атомы и пустота существуют в природе, составляя истинное бытие и абсолютную истину, и все в этом мире образуется из них. Атомистическое объяснение природы оказало большое влияние на развитие естествознания, обогатило его ценнейшей гипотезой, которая толкала опытное исследование вперед и позволяла объединить в цельную систему разнообразные наблюдения.
Однако в средние века античная атомистика находилась в полном забвении. О ней не хотели ни слушать, ни говорить, поскольку в это время в науке господствовало мировоззрение Аристотеля, не признававшего атомистику, доминировали теологические церковные догмы, схоластика и оппозиционная ей мистика. И только в медицине, благодаря Целию Аврелиану, атомистика пользовалась доверием и изучалась.
По прошествии двух тысячелетий, на излете средних веков, когда повеяло свежими ветрами и от Аристотеля стали отрекаться, античная атомистика возрождается и оказывает сильное влияние на развитие теоретического естествознания и философию. Так, в 1647 французский философ-материалист и теолог, академик флорентийской Academia della Crusca Пьер Гассенди издает книгу “Physica corpusculuaris”, в которой признает атомное учение Демокрита и Эпикура. А именно – атомы представляют собой бесконечно малые, незримые, неуловимые и неуничтожаемые частицы, число которых немного, из них состоят все тела, они сочетаются и соединяются в молекулы, отличаются друг от друга формой, величиной, весом, действуют друг на друга, двигаются и двигают, между ними находится пустое пространство. Они – первооснова всех существующих вещей, даже свет и теплота состоят из атомов. Гассенди считал, что атомы сотворены богом. Наверное, поэтому его корпускулярная философия находила поддержку у иезуитов, считавших ее вполне согласной с учением римской церкви о таинствах.
Большое влияние античные атомисты во главе с Демокритом оказали на Галилея, который воскрешает классическую атомистику и одним из первых в истории науки пытается установить действительную структуру материи.
Декарт не был сторонником атомизма. Но чтобы как-то объяснить химические и физические свойства веществ, принимал существование мельчайших частиц разнообразной формы – шарообразных, угловатых, крючковатых. Он говорил о бесконечной делимости материи, о том, что ему неизвестна иная материя телесных вещей, как только всячески делимая, могущая иметь фигуру и движения. Но в отличие от Демокрита, который предполагал существование пустого пространства, Декарт считал невозможным существование пустоты.
Ньютон не был противником атомистического учения. С одной стороны, он легко пришел к атомизму Лукреция и Гассенди, утверждающему, что атомы, составляющие материю и вещество обладают такими постоянными свойствами, как протяженность, твердость, непроницаемость, подвижность и инертность. С другой стороны, судя по мемуарам и письмам, – как пишет С.И.Вавилов (1946, 1947), – физические позиции Ньютона в применении атомистической гипотезы были не совсем ясными, формально нейтральными. В “Началах” атомы не упоминаются. Ньютон никогда не защищает корпускулярную теорию света. И тем не менее… В “Лекциях по оптике” автор “hypotheses non fingo” видит световые лучи как летящие частицы – “отскакивающие”, “текущие”, “последовательно падающие”. В так называемом 31-ом вопросе “Оптики” Ньютон говорит о иерархическом строении вещества, в основе которого – если говорить в следующих предложениях – находятся плотные, может быть абсолютно плотные и неизменяемые элементарные частицы; эти частицы связываются между собой особыми силами, образуя чрезвычайно прочные компактные системы очень малых размеров; эти системы в свою очередь связываются в новые, менее прочные и более объемистые образования и т.д., вплоть до привычных нам больших тел; теплота соответствует движению частиц разной степени сложности (см. Вавилов, 1946, 1947). Таким образом, заключает С.И.Вавилов, Ньютон предугадал все в области атомизма, что было возможно на основе имеющегося к тому времени экспериментального материала. Надо заметить, что в те времена многие физики еще сомневались в существовании атомов, тогда как математики говорили, что линия – это бесконечное количество точек, в известном порядке расположенных, говорили о возможности бесконечной делимости пространства.
Выдающийся французский ученый, биолог-микроскопист XVIII века Шарль Боннэ в своей классической работе “Соображения об органических телах” писал: “Нам нужно раскрыть глаза и пройтись взглядом вокруг нас, чтобы увидеть, что материя изумительно делима. Лестница существ есть лестница этой делимости. Во сколько раз плесень меньше кедра, моль – слона, водяная блошка – кита, песчинка – земного шара, световая частица – солнца? Доказано, что одна унция золота может быть искусством человека так подразделена, что образует нить от восьмидесяти до ста миль длиной. Нам показывают в микроскоп животных, несколько тысяч которых не превышают вместе величину пылинки”.
Идеи классической атомистики мы находим в трудах М.В.Ломоносова, писавшего о том, что газ – это совокупность отдельно движущихся частиц и что вещества состоят из мельчайших “нечувствительных”, имеющих свой собственный объем, корпускул, которые в свою очередь состоят из неделимых атомов.
В начале XIX века английский ученый-самоучка Джон Дальтон показал, что каждый химический элемент состоит из колоссального количества крайне ничтожных частиц, или атомов, связанных между собой более или менее значительной в зависимости от обстоятельств силой притяжения и неделимых никакими известными в то время способами. Атомы различных элементов имеют разные веса, а атомы одного и того же элемента тождественны, имеют один и тот же неизменный вес (заметим, однако, что уже Эпикур различал атомы не только по форме и величине, но и по весу). Атомы способны соединяться между собой в простых кратных отношениях, т.е. так, что один атом присоединяет только целое, но никак не дробное число других атомов. Дальтон, например, нашел, что в окислах углерода весовые части водорода, соединяющиеся с одинаковым количеством углерода, относятся между собой, как 1:2. Современник Дальтона англичанин Волластон почти в то же время также установил закон кратных отношений, доказав, что количества щавелевой кислоты, соединяющиеся с неизменным количеством едкого калия, относятся между собой, как 1:2:4. Открытие закона простых кратных (прерывистых) отношений как общего закона состава и строения химически сложных веществ превратило атомистическую идею древних греков в закон химической атомистики. В дальнейшем Берцелиус показал, что закон Дальтона можно приложить и к органическим веществам.
Д.И.Менделеев, не признававший абсолютной дискретности, тем не менее примкнул к атомистической теории, не сомневаясь в реальном существовании атомов, и даже считая, что атомы простых тел образованы сложением некоторых еще меньших частей (ультиматов) и неделимы только обычными химическими силами и что переход от одного элемента к другому в результате постепенного нарастания атомного веса происходит не плавно, а резким скачком, путем перерыва постепенности.
Людвиг Больцман – автор молекулярно-кинетической теории газов – первый, применив атомистические представления, показал, что тепловая энергия какого-нибудь тела есть не что иное как ансамбль незаметных, быстрых, беспорядочных, неправильных движений отдельных молекул, тем самым объяснив основную идею II начала термодинамики, сущность которого выражается “гипотезой элементарного беспорядка” – допущением, что отдельные элементы, которыми оперирует статистический метод, совершенно независимы друг от друга.
“Все наблюдения единогласно доказывают, что существуют тела таких ничтожных размеров, что только сцепляясь миллионами, они могут возбуждать наши органы чувств,- писал Больцман.- Мы называем их атомами и молекулами. Может быть, атомистическая гипотеза будет вытеснена какой-либо другой гипотезой. Может быть, но невероятно”. В этом контексте очень важно добавить, что именно Больцман (об этом пишет ни кто иной как сам Вильгельм Оствальд) впервые ввел положение о том, что атомистическую природу имеет не только вещество, но и энергия. Больцман последовательно отстаивал атомизм и считал, что атомистика неизбежна для всякого естественно-научного мировоззрения, она играет важную роль в развитии науки и лучше других теоретических концепций объединяет и объясняет экспериментальный материал. При этом атомистика не должна сохранять в себе раз навсегда определенные черты.
Однако представители школы энергетистов, “кумиры эпохи” Мах, Оствальд, Дюгем, противопоставлявшие энергию веществу и провозглашавшие первую единственной носительницей физической реальности, отрицали существование атомов, и материи в целом, пренебрежительно отзывались о работах Больцмана, в которых развивались материалистические атомистические воззрения, считая атомистику “фантазией, бредом и шабашем ведьм”. На рубеже XIX и XX веков В.Оствальд отрицал существование атомов, молекул и материи в целом, пытался освободить химию и все естествознание от атомистики, как от лишнего балласта, считая ее совершенно не необходимой. “Атом, – писал Оствальд, – издавна представлял собой лишь весьма несовершенное изображение действительности”. Далее Оствальд утверждал, что теория растворов и теория электролитической диссоциации могут развиваться без участия атомов и молекул и что ионы можно трактовать не как электрически заряженные атомы, а как порции энергии. И все это говорилось тогда, когда набирала силу атомно-молекулярное кинетическое учение, а основные результаты в физике и химии были получены с применением атомистики. Однако вскоре после трагической смерти Больцмана и начавшегося переворота в физике (экспериментальная работа Перрена по броуновскому движению, открытие Д.Томсоном электрона и открытие явления радиоактивности) Оствальд вынужден был признать, что “в настоящее время получены экспериментальные подтверждения в пользу прерывистого, зернистого строения веществ, которые отыскивала атомистическая гипотеза на протяжении столетий и тысячелетий”.
Итак, к середине и концу XIX века атомы прочно вошли во многие исследования, проводимые в области химии. Было установлено, что атом – это мельчайшая частица химического элемента, неизменный и неделимый, а молекула – мельчайшая частица вещества. Между тем оставалось совсем немного времени до того момента, когда станет ясно, что атомы – это сложные системы и что они могут быть разложенными.
НОВАЯ АТОМИСТИКА: МИКРОФИЗИЧЕСКАЯ И ГЕНЕТИЧЕСКАЯ
Чем дальше по своим проявлениям отстоят друг от друга
две области науки, тем глубже лежит то, что их объединяет
В.Гейтлер
Дискретность структур организации – это
то общее, что связывает мир живого и неживого
Е.Н.Князева, С.П.Курдюмов
14 декабря 1900 года действительный член Берлинской академии наук Макс Планк выступил на заседании физического общества с докладом, в котором высказал идею о том, что процессы поглощения и излучения электромагнитной, лучистой энергии отдельным резонатором (атомом или молекулой) протекают не непрерывно, а целыми дискретными, крайне малой величины, порциями, которые впоследствии были названы квантами. Другими словами энергия подобно материи состоит из частиц, и энергия этих частиц имеет разную величину * . “Я либо сделал открытие первого ранга, сравнимое с открытиями Ньютона, либо сильно ошибся”, – говорил Планк своему сыну. То, что великий квантовый физик сомневался в собственном открытие, свидетельствует его выступление в 1911 году на I Сольвеевском конгрессе по физике, когда он полностью признал главенство максвелловской электродинамики и исключил возможность существования световых квантов, хотя уже знал из экспериментов Эйнштейна, Штарка и Комптона, что свет обладает корпускулярными свойствами. И только после того как Нильс Бор, положив в основу модели атома квантовую теорию, постулировал, что излучение и поглощение квантов света происходит только при скачкообразном переходе электрона с одной дозволенной орбиты на другую, Планк признал, что природа делает скачки, и довольно странные, что явления дисперсии, рентгеновских лучей, радиоактивности могут быть поняты только на почве кинетической атомистики. Кроме того, Планк заключил, что вычисление определенной величины вероятности для каждого состояния системы становится возможным, благодаря введению атомистической теории и статистического метода исследования. Взаимодействие между отдельными атомами при этом по-прежнему может определяться известными законами динамики, механики и электродинамики.
Анри Пуанкаре, рассматривая проблемы материализма и теории, основанные на представлениях атомизма и непрерывности, писал: “Разум не любит плохо задуманных исследований, не оставляющих никакой надежды довести их до конца, – ему предпочтительно полагать, что в один прекрасный день он сумеет обнаружить простейшие первоэлементы мироздания, а затем ему останется только почивать на лаврах. Есть только два способа понимать атомизм. Атомы можно считать первоэлементами в абсолютном смысле этого слова, представляя их совершенно неделимыми в соответствии с этимиологическим смыслом самого слова “атом”. В этом случае, проникнув вплоть до атома, мы могли бы удовлетвориться и достигнуть полного метафизического душевного спокойствия. К сожалению, такое состояние блаженства не может быть длительным, ибо, если фундаментальная потребность нашего разума находить первоэлементы и получает удовлетворение, нам присущи еще и другие потребности. Нам недостаточно понимать – мы хотим еще и видеть, нам недостаточно пересчитывать все атомы – мы хотим их представлять себе, мы приписываем им некоторую форму и этого уже довольно для того, чтобы мы могли рассматривать их как неделимые лишь для средств, располагаемых нами сейчас, но не для более мощных средств, которые мы можем себе вообразить. Этого довольно и для того, чтобы перед нами неизбежно встал вопрос: не существуют ли первоэлементы, составляющие атом, так сказать “атом атомов”?”
И вот, в этот бурный период времени физика, перехватившая знамя атомистики у химии, считавшей атом мельчайшей частицей химического элемента, неделимой в химических процессах, отвергла экспериментальным путем положение о неделимости атома, доказала, что атом – это сложная квантово-механическая система, разрушаемая и превращаемая. Она открыла новые дискретные формы физической материи: электрон, протон и нейтрон (позже позитрон и нейтрино), рентгеновские кванты, явления радиоактивности, двойственной природы света и вещества, аннигиляции, материализации квантованной энергии, атомной структуры света, атомной структуры кристаллов, фотоэффекта, была разработана количественная теория броунова движения. Все это с большой очевидностью продемонстрировало, что физическая материя имеет зернистое строение, что она многообразна и неисчерпаема. Физическая прерывность – “начало всех начал”.
Итак, атомистика, пройдя путь длиною в 25 веков, превратилась от простой, но гениальной догадки древних греков в настоящую научную теорию, верно отражающую объективную реальность. Новая атомная теория покоится на принципиальных обобщениях квантовой физики, на законах, действующих в области микромира.
И в последние годы физика продолжает концентрировать свои основные силы в области исследований свойств и структуры неживой материи, теперь уже на уровне атомных ядер, физики высоких энергий. В 1964 году американский физик Мюррей Гелл-Манн выдвинул гипотезу, согласно которой все барионы и мезоны состоят из так называемых прачастиц, названных автором весьма забавно кварками. Слово заимствовано из романа ирландского писателя Джеймса Джойса “Поминки по Финнегану”, в котором есть песня, начинающаяся словами “three quarks”, что означает три карканья, три кваканья, три пустяка. Благодаря кваркам, которые еще не открыты, но которых ощутить можно, установлено зернистое строение протона. Несмотря на то что кварки – эти современные атомы Демокрита – до сих пор не зарегистрированы в свободном виде и из чего они состоят никто не знает, теория кварков (или квантовая хромодинамика) интенсивно развивается. Поскольку все развитие атомистики шло по пути введения все новых и новых кирпичиков вещества, а именно, молекул, атомов, атомных ядер, элементарных частиц – замечает В.Л.Гинзбург (1990), – кварки, которые возможно реальны и обладают свойствами “удержания”, являются как бы еще одним этапом на этом пути, и если так будет продолжаться дальше, то встанет вопрос, а из чего слеплены сами кварки; в физической литературе уже поговаривают о существовании протокварков. Надо сказать, что эта идея очень созвучна с мыслью французского философа-материалиста XVIII века Жана Батиста Рабине, не допускавшего последних элементов материи и считавшего процесс деления безграничным.
1900 год – официальная дата рождения генетики, как науки о наследственности и изменчивости. Весной этого года три европейских ученых Гуго де Фриз, Корренс и Чермак независимо друг от друга открыли, соответственно, на маке, кукурузе и горохе закон расщепления гибридов. Через год к ним присоединился известный английский ученый Бэтсон, установивший природу прерывности на курах. Однако результаты исследований этих ученых оказались, как говорится, всего лишь ярким эпизодом ко вторичному открытию старой забытой работы австрийского монаха Грегора Менделя “Опыты над растительными гибридами”, опубликованной в 1865 году в малоизвестном журнале Общества естествоиспытателей города Брно. В этой работе Мендель, используя для своих опытов разновидности обычного садового гороха, впервые представил важнейшие закономерности наследования признаков. Он показал, что признаки (точнее говоря, факторы, их детерминирующие) наследуются отдельно, они не исчезают, не изменяются и не стушевываются в поколениях, а сохраняются. При этом в потомстве гибридов I поколения доминантные и рецессивные признаки расщепляются в определенном количественном соотношении. Так, при моногибридном скрещивании гибриды второго поколения расщепляются по фенотипу в отношении 3:1; при дигибридном и тригибридном скрещиваниях, соответственно, 9:3:3:1 и 27:9:9:9:3:3:3:1. В этом плане менделевские расщепления по своему значению в истории генетики без преувеличения занимают место теории кратных отношений Дальтона в химии.
Секрет успеха Менделя в открытии законов дискретной наследственности состоит в том, что в отличие от других ботаников-гибридизаторов, его современников О.Сожрэ, Т.Найта, Дж.Госса, Ш.Нодэна, не отходивших от принципа слитной, смешанной наследственности, оперировавших в работах по отдаленной гибридизации сразу множеством признаков и не применявших статистических подходов при гибридологическом анализе, Мендель, будучи по образованию математиком и физиком, упростил схему своих экспериментов. Он использовал метод внутривидовой гибридизации, классические статистические методы. В каждом случае он имел дело только с одной деталью, с одной парой резко контрастирующих признаков одного порядка. Таким образом, разрешая проблему по частям и встав на принцип дискретной детерминации признаков, Мендель стал первым квантовым биологом, который открыл, что явление (субстрат) наследственности имеет прерывистый характер и что носителями дискретности являются некие факторы, задатки (в современной интерпретации гены). Он увидел закономерность и порядок там, где другие видели хаос.
C другой стороны, сам факт, что один и тот же фактор (ген) на самом деле состоит из двух аллелей – либо доминантных (АА), либо рецессивных (аа), или альтернативных (Аа), расположенных в одном локусе, но в двух разных гомологичных хромосомах, говорит в пользу генетической прерывности. О дискретности наследственных атомных единиц (генов) свидетельствует и то обстоятельство, что образующиеся в репродуктивных органах различных существ зрелые половые клетки по своей природе чисты. Это означает, согласно правилу Бэтсона, что каждая из гамет (яйцеклетка или спермий) не может одновременно располагать двумя аллельными генами. Правило Бэтсона чем-то напоминает действующий в современной квантовой физике принцип Паули, запрещающий двум одинаковым фермионовым частицам находится в одном и том же состоянии. Или подобно тому, как на каждом энергетическом уровне можно “поселить” только строго определенное число электронов, так и в каждой зрелой половой клетке должно быть только по одной “оторванной” аллели каждой пары генов. Между тем теоретическими физиками уже постулируется возможность нарушения принципа Паули, когда два идентичных фермиона (например, электрона) могут одновременно находиться в одном квантовом состоянии, т.е. иметь одинаково направленные спины, что приводит к аномальному состоянию энергетического уровня в атоме, а следовательно, к слабой аберрации излучения, испускаемого при переходе электронов с одной орбиты на другую. Аналогичным образом, неправильное расхождение гомологичных хромосом в процессах мейоза приводит к генетической несбалансированности половых клеток, а следовательно, функциональной неполноценности их, что может влечь за собой гибель зигот и эмбрионов, нарушения эмбрионального развития, спонтанные аборты, появление генетически нездорового потомства. Понятно, что в обоих случаях – атомном и генетическом – мы имеем дело с аномальными явлениями. Но если в первом случае мы имеем дело пока еще с чисто теоретическим построением, то во втором – опираемся на большой массив экспериментальных данных. Вообще, считается, что законы дискретности неблагоприятно оценивают смешанные системы в сравнении с чистыми системами. Итак, менделизм открыл, что органическая наследственная материя состоит из отдельных, функционально неделимых частей, генов. Все последующее развитие генетической теории, связанное с открытием явлений множественного аллелизма (генной изотопии), немых генов, интронно-экзонной организации генной структуры, механизма образования мутаций подтвердили квантовую сущность генетического субстрата, показали, что все многообразие биологического мира осуществляется дискретными генетическими единицами, их сочетаниями и изменениями. Кроме того, согласно теории Рапопорта, генетическая прерывность включает способность к аутокатализу, гетеросинтезу, хромосомному внутригенному перекресту, случайному и внезапному становлению мутаций. Дискретны крупномасштабные события амфи- и автоплоидии, дискретны митоз и мейоз, образование различных типов хромосомных перестроек (Рапопорт, 1974). Созданию современных представлений о дискретном строении наследственного вещества сильно содействовали мутационные и молекулярно-биологические исследования.
В 1900-1901 гг. увидела свет другая, не менее значительная работа Гуго де Фриза “Мутационная теория”, в которой впервые было произнесено слово “мутация” и выведено, что наследственные изменения происходят в результате случайных, прерывистых, скачкообразных перемен в генетическом материале. С тех пор понятия “скачок” и “мутация”, “скачкообразность” и “мутационность” рассматриваются генетиками как понятия-синонимы. Э.Шредингер, чей вклад в науку в ХХ столетии С.И.Вавилов сравнивал с заслугами И.Ньютона, в своей знаменитой книжке “Что такое жизнь с точки зрения физика” писал, что факт прерывистости означающий в данном случае отсутствие между неизменными особями и немногими измененными промежуточных форм, напоминает физику квантовую теорию, в которой есть положение о том, что между двумя соседними энергетическими уровнями нет промежуточных ступеней, что механизм наследственности тесно связан с квантовой теорией, и даже опирается на нее. Заметим, однако, что много ранее, а именно, в 1912 году, А.Пуанкаре высказал мысль, что физическая система перескакивает из одного состояния в другое, не проходя через непрерывный ряд промежуточных состояний. Во многих случаях качественные, скачкообразные изменения генов происходят благодаря количественным изменениям в наследственных структурах; протекающие при этом мутагенные реакции по своему характеру очень сильно напоминают явления, наблюдаемые в физическом квантовом мире (ядерные реакции, процессы радиоактивного распада, деления атомного ядра и его полного расщепления на составные частицы).
Итак, 1900 год ознаменовался рождением двух великих теорий – квантовой и генной. Обе теории сыграли важную революционную роль в теоретическом развитии атомистики, установили две фундаментальные черты материального мира – дискретность и скачкообразность.
ПРИРОДНЫЕ АТОМИЗМЫ
Природа есть бесконечно разделенный бог.
Ф.Шиллер
Найти в малейшем сходное с громаднейшим -
составляет одно из достоинств атомизма,
привлекшим к нему новые века.
Д.И.Менделеев
С точки зрения теоретического естествознания природа – это огромное общее целое, разделенное на части – атомизмы или сложные дискретные множества, представляющие собой различные ступени в организации и развитии материи, ее бесконечно многообразные раздельные формы (объекты, структуры, системы, состояния, процессы), относительно устойчивые и реально существующие в пространстве и времени, обладающие количественными и качественными различимостями, способные к скачкообразным изменениям. В атомизмах воплощена классическая иерархия дискретных, дробных единиц, квантованных частей материи, ее разнообразие, история. Интересно отметить, что первым, кто приходит к иерархической системе вещества (физического) был Ньютон, поставивший на вершину этой системы, по выражению С.И.Вавилова, неделимые элементарные частицы. И хотя все известные природные атомизмы – физический, космический, генетический, биологический – обладают “качественными своеобразиями, рождены в разное время и неравны по созидательным потенциалам”, все они подчинены одной “идеальной схеме”, одним и тем же “стройным объединяющим разумным законам”, господствующим в природе. Каждый из них складывается из нескольких разных ступеней усложнения. К атомизмам мы еще вернемся. А пока для лучшего понимания мироустройства сделаем отступление и попытаемся дать, не выходя далеко за рамки темы, более или менее рациональную фундаментальную современную характеристику основным звеньям Великой цепи бытия, названной так мудрым американским историком Артуром Лавджоем (Arthur O.Lovejoy).
ВЕЛИКАЯ ЦЕПЬ БЫТИЯ
БОГ
РАЗУМ
СТАНОВЛЕНИЕ (бытия жизни)
ПОРЯДОК
ХАОС
НИЧТО
ЯРУСЫ ПРИРОДНЫХ АТОМИЗМОВ:
НИЧТО
В твоем ничто я все найти мечтаю
Гете
“…Он (Моне) понял, что ничто – это все вокруг, схваченное в момент своего временного отсутствия.
Он представлял ничто, как нейтральную зону между тем, что есть, и тем, что больше нет”
А.Баррико, “Сити”
Ничто – нулевой уровень космической пирамиды, пустое пространство без времени, энергии и энтропии, отсутствие каких-то качеств, определенности, абсолютный конец (или начало?) бытия, темнота, страшная бездна, в которой все исчезает. Последний крупный представитель элейской школы философ Мелисс говорил: “То, что есть ничто, существовать не может. Равным образом нет движения. Ибо сущему некуда отойти, но все полно. В самом деле, если бы существовала пустота, то сущее отступило бы в пустое пространство. Но раз пустоты нет, ему некуда уйти”. В мистических и религиозных концепциях Ничто – это потенциальное, невыявленное; непостижимая основа реальности вещей, бескачественная и бесформенная материя; у Ничто нет упорядоченности, нет собственного пространства и времени (Селиванов, 2003). В религиозной философии С.Булгакова выделяются два вида ничто: укон – пустое ничто (абсолютное) и меон – ничто как возможность, как нечто, в котором существует бытие в непроявленном виде. И мир есть развитие потенциальности меона (цит. по Тахтину, 2001). Теперь если предположить, что меон – это мир Хаоса, то тогда укон – его дно. В Ничто никакая наука не может проникнуть, но это не избавляет нас от исследований Ничто.
ХАОС
И брызнул поток с оглушительным ревом,
Извергнутый бездны зияющим зевом.
Шиллер
Нам свойственно предполагать хаос и тьму там, где все для нас неизвестность.
Гете
Буйный жизненный хаос лежит в основе изумительной гармонии органического мира
К.А.Тимирязев
Хаос – понятие многогранное, неоднозначное и очень сложное, есть различные его определения и различное его понимание.
Античные мыслители считали, что хаос (в переводе с греч. зевание, зияющая бездна, разверстное пространство, пустая протяженность) – это первая материя, бесформенная, неопределенная, беспредельная первооснова. Из первобытийного хаоса в результате круговоротов атомных вихрей, разделяющих массы материи, возник порядок и закон, возникли небеса, миры, космос. Хаос – активное, животворящее начало. По Платону, хаос – божественное начало – когда демиург, взявший все на себя, творит порядок из хаотического вещества.