Russian
| English
"Куда идет мир? Каково будущее науки? Как "объять необъятное", получая образование - высшее, среднее, начальное? Как преодолеть "пропасть двух культур" - естественнонаучной и гуманитарной? Как создать и вырастить научную школу? Какова структура нашего познания? Как управлять риском? Можно ли с единой точки зрения взглянуть на проблемы математики и экономики, физики и психологии, компьютерных наук и географии, техники и философии?"

«МЕТОДОЛОГИЯ СИНЕРГЕТИКИ В ПОСТНЕКЛАССИЧЕСКОЙ НАУКЕ: ПРИНЦИПЫ И ПЕРСПЕКТИВЫ» 
В. Буданов

Опубликовано в: Что такое синергетика?

При рассмотрении двух соседних уровней в фазе Бытия принцип подчинения гласит: долгоживущие переменные управляют короткоживущими [19], вышележащий уровень — нижележащим. Следует отметить, что этот принцип в динамических системах с временной иерархией задолго до Г. Хакена был открыт выдающимся советским математиком академиком А.Н. Тихоновым (знаменитая теорема Тихонова). В заключение подчеркнем, что принцип подчинения справедлив не всегда , его не стоит абсолютизировать. Все это свидетельства того, что иерархичность не может быть раз и навсегда установлена, т.е. не покрывается только принципом Бытия, порядка. Необходимы принципы Становления — проводники эволюции.

ПОРОЖДАЮЩИЕ ПРИНЦИПЫ СТАНОВЛЕНИЯ

Выполнение этих принципов является необходимым и достаточным условием становления, рождения в системе нового качества. Начнем с трех принципов, «ТРЕХ НЕ», или «НЕ» — принципов, которых всячески избегала классическая методология, но которые позволяют войти системе в хаотическую креативную фазу. Обычно это происходит за счет положительных обратных связей, усиливающих в системе внешние возмущения.

3. Нелинейность. Линейность — один из идеалов простоты многих поколений математиков и физиков, пытавшихся свести реальные задачи к линейному поведению. Замечательно, что это всегда удается вблизи положения равновесия системы (так называемый метод нормальных колебаний) [20]. Гомеостаз системы часто осуществляется именно на уровне линейных колебаний около оптимальных параметров, поэтому так важен простой линейный случай. Он экономит наши интеллектуальные усилия. Определяющим свойством линейных систем является принцип суперпозиции: сумма решений есть решение, или иначе, результат суммарного воздействия на систему есть сумма результатов, так называемый линейный отклик системы, прямо пропорциональный воздействию. Итак, нелинейность есть нарушение принципа суперпозиции в некотором явлении: результат суммы воздействий на систему не равен сумме результатов этих воздействий. Результаты действующих причин нельзя складывать.

РЕЗУЛЬТАТ СУММЫ ПРИЧИН ? СУММЕ РЕЗУЛЬТАТОВ ПРИЧИН

В более гуманитарном, качественном смысле: результат непропорционален усилиям, неадекватен усилиям, игра не стоит свеч; целое не есть сумма его частей; качество суммы не тождественно качеству слагаемых, и т.д. Последнее, в частности, следует из того факта, что в системе число связей между ее элементами растет быстрее числа самих элементов ~ N*N/2. Но это не значит, что надо отказаться от быстрого линейного прогнозирования, этого основного стандарта нашего мышления, просто надо знать область его применимости.

Любая граница целостности объекта, его разрушения, разделения, поглощения, предполагает нелинейные эффекты. Можно сказать, что нелинейность «живет», ярко проявляется вблизи границ существования системы. Линейные стратегии мышления экономны и эффективны, но лишь в ограниченных рамках гомеостаза, вне которых они обманчивы, а порой и опасны.

Иногда говорят о «нелинейном мышлении» — красивой метафоре, которую каждый понимает по-своему. Но иногда гуманитарии призывают «нелинейное мышление» начать последний бой с «линейным мышлением», такая война метафор абсурдна, поскольку линейная математика есть важнейший предельный случай нелинейной математики, а зачастую основа ее приближенных, итерационных методов.

4. Незамкнутость (открытость) . Невозможность пренебрежения взаимодействием системы со своим окружением. Свойство, которое долгое время пугало исследователей, размывало понятие системы, сулило тяжелые проблемы.

В замкнутых системах с очень большим числом частиц справедлив второй закон (второе начало) термодинамики, гласящий, что энтропия S (мера хаоса) со временем возрастает или остается постоянной ?S ? 0, т.е. хаос в замкнутой системе не убывает, он может лишь возрастать, порядок обречен исчезнуть. Именно открытость позволяет эволюционировать системам от простого к сложному, разворачивать программу роста организма из клетки-зародыша. Это означает, что иерархический уровень может развиваться, усложняться только при обмене веществом, энергией, информацией с другими уровнями.

Более того, самые интересные гомеостатические структуры – это структуры, не находящиеся в равновесии со средой, т.е. не обладающие максимально возможной энтропией. Они могут существовать лишь в открытых, диссипативных системах, и в больших системах их называют устойчивыми неравновесными структурами, поддерживающими себя за счет внешних потоков вещества, энергии, информации. На языке иерархических уровней принцип открытости подчеркивает два важных обстоятельства [21]. Во-первых, это возможность явлений самоорганизации бытия в форме существования стабильных неравновесных структур макроуровня (открытость макроуровня к микроуровню при фиксированных управляющих параметрах). Во-вторых, возможность самоорганизации становления , т.е. возможность смены типа неравновесной структуры, типа аттрактора (открытость макроуровня к мегауровню меняющихся управляющих параметров системы).

Оказывается, что при переходе от одного положения гомеостаза к другому, система становится обязательно открытой в точках неустойчивости. Даже если вы использовали первоначально замкнутую модель, в таких точках ее следует расширить до открытой модели.

5. Неустойчивость. Выполнение принципов нелинейности и незамкнутости, при определенных условиях позволяет системе покинуть область гомеостаза и попасть в неустойчивое состояние.

Такие состояния неустойчивости, выбора принято называть точками бифуркаций. . Правильно говорить о неустойчивом состоянии, которому отвечает точка в пространстве управляющих параметров (мегауровень), именно ее и называют точкой бифуркации. Иногда говорят о моменте бифуркации, когда параметры проходят эту критическую точку. Они непременны в любой ситуации рождения нового качества и характеризуют рубеж между новым и старым. Например, высшая точка перевала отделяет одну долину от другой, это неустойчивое положение шарика на бугорке.

Значимость точек бифуркации еще и в том, что только в них можно не силовым, информационным способом, т.е. сколь угодно слабыми воздействиями повлиять на выбор поведения системы, на ее судьбу . Однако сразу оговоримся, что не всякие бифуркации являются точками выбора, очень часто они безальтернативны (в первом приближении), например, большинство фазовых переходов в неживой природе, в частности, замерзание и закипание воды. Если же альтернатива не одна, т.е. происходит случайный выбор и запоминание (т.е. последующий выход на новый аттрактор), то говорят о рождении или генерации в точке бифуркации макроинформации по Кастлеру [22] .

Открытие неустойчивости, непредсказуемости поведения в простых динамических системах, содержащих не менее трех переменных, в шестидесятые годы совершило революцию в понимании природы сложности нашего мира, открыло нам миры динамического хаоса, странных хаотических аттракторов и фрактальных структур.

КОНСТРУКТИВНЫЕ ПРИНЦИПЫ.

Эти принципы организуют предыдущие пять принципов в самосогласованное кольцо принципов, предъявляя механизмы их сборки и понимания, а так же сопряжения со средой.

6. Динамическая иерархичность (эмерджентность).

Это обобщение принципа подчинения на процессы становления — рождение параметров порядка, когда приходится рассматривать взаимодействие более чем двух уровней. Сам процесс становления есть процесс исчезновения, а затем рождения одного из них в процессе взаимодействия минимум трех иерархических уровней системы, здесь, в отличие от фазы бытия, переменные параметра порядка, напротив, являются самыми быстрыми, неустойчивыми переменными , среди конкурирующих макрофлуктуаций.

Это основной принцип прохождения системой точек бифуркаций, ее становления, рождения и гибели иерархических уровней. Этот принцип описывает возникновение нового качества системы по горизонтали, т.е. на одном уровне, когда медленное изменение управляющих параметров мегауровня приводит к бифуркации, неустойчивости системы на макроуровне и перестройке его структуры.

В синергетике это представлено как процесс самоорганизации, рождения параметров порядка, структур из хаоса микроуровня:

  • управляющие сверхмедленные параметры верхнего мегауровня” +
  • короткоживущие переменные низшего микроуровня” =
  • параметры порядка, структурообразующие долгоживущие коллективные переменные нового макроуровня” .

Можно представить основную идею становления совсем коротко, символически:

МЕГА + МИКРО == МАКРО new

Иногда используют язык флуктуаций (случайных отклонений характеристик системы от средних значений), говоря, что флуктуации, будущие альтернативы, конкурируют и побеждает наиболее быстрорастущая из них — порядок через флуктуации по Пригожину.

По вертикали отложено структурное время, по горизонтали текущее физическое время. В точке бифуркации макроуровень исчезает и возникает прямой контакт микро- и мега- уровней, рождающий макроуровень с иными качествами.

Согласно Г.Хакену, принцип подчинения в ситуации «становления» инвертируется по сравнению с формулировкой для ситуации «бытия». Параметр порядка теперь не самый медленный, но, напротив, самый неустойчивый, самый быстрый. Наиболее полно и эффективно эти процессы рассмотрены в работах школы С.П. Курдюмова: так называемые режимы с обострением [23] .

Описанный нами процесс есть самоорганизация в режиме становления, и ее следует отличать, как мы видели, от самоорганизации в режиме бытия, т.е. от процессов поддержания гомеостаза стабильной диссипативной структуры. Таким образом, феномен самоорганизации принципиально по-разному проявляется в фазах бытия и становления.

7. Наблюдаемость . Именно последние два принципа включают принципы дополнительности и соответствия, кольцевой коммуникативности и относительности к средствам наблюдения, запуская процесс диалога внутреннего наблюдателя и метанаблюдателя. Принцип наблюдаемости подчеркивает ограниченность и относительность наших представлений о системе в конечном эксперименте. В частности, это принцип относительности к средствам наблюдения, ярко заявивший свои права в теории относительности и квантовой механике. В теории относительности метры и секунды свои для каждого движущегося наблюдателя, и то, что одновременно для одного не одновременно для другого. В квантовой механике, измеряя точно одну величину, мы обречены на неведение относительно многих других (принцип дополнительности Бора). В синергетике это относительность интерпретаций к масштабу наблюдений и изначальному ожидаемому результату. С одной стороны, то, что было хаосом с позиций макроуровня, превращается в структуру при переходе к масштабам микроуровня. Сами понятия порядка и хаоса, Бытия и Становления относительны к масштабу-окну наблюдений. И целостностное описание иерархической системы складывается из коммуникации между наблюдателями разных уровней, подобно тому, как коммуницируют наблюдатели разных инерциальных систем отсчета в теории относительности, или создается общая научная картина мира из мозаики дисциплинарных картин.

Принцип наблюдаемости понимается нами как открытый комплексный эпистемологический принцип, его включение делает систему принципов синергетики открытой к пополнению философско-методологическими и системными интерпретациями. Например, для живых и социальных систем естественно было бы добавить принципы репликации, сопряжения со средой, коэволюции, для исследования сознания принцип рефлексии и т.д. Согласно Б.Н. Пойзнеру и Д.Л.Ситниковой [24] , репликатор — это «самовоспроизводящаяся единица информации», зеркало или объект, «побуждающий определенные среды к своему копированию», т.е. довольно высокая форма отражения материи. В биосистемах это гены, в лазере — фотоны, в культуре — нормы, культурные образцы и архетипы. Для репликаторов справедливы все дарвиновские законы. Оказывается, что в сложных системах с репликацией воспроизводится не только ситуация самоподдержания традиции, гомеостаза, но и ситуация конфликта реплики и оригинала, например в силу запаздывания с ее воспроизводством, ее неадекватности изменившимся условиям среды или сбоя в процессе репликации (мутациях), что побуждает к процессам становления в такой самореферентной системе.

В заключение еще раз подчеркнем, что эпистемологический принцип наблюдаемости в соединении с шестью другими принципами синергетики позволяет замкнуть герменевтический круг постнеклассического познания сложной реальности и корректно поставить дальнейшие философские вопросы понимания, описания, объяснения, которые мы здесь только обозначили.

Этапы синергетического моделирования в сложных междисциплинарных системах и междисциплинарных исследованиях

Поясним подробнее наше видение процесса полноформатного синергетического моделирования в гуманитарной сфере и междисциплинарном проектировании. Рефлексия над этим опытом с учетом известных ранее подходов позволяет выделить в процессе синергетического моделирования следующие этапы [25] :

1. Постановка задачи в дисциплинарных терминах, включая междисциплинарную экспертизу. Этот этап в междисциплинарном проекте предполагает мониторинг и независимую экспертизу проблемы в терминах различных дисциплин-участниц проекта, подобную заключению отдельных врачей-специалистов при прохождении человеком диспансеризации. На этом этапе проблема диагностируется, высвечиваются все коммуникативные разрывы в ее понимании разными дисциплинами. Кстати, это могут быть и не дисциплины, а разные концепции, гипотезы, парадигмы, культуры, школы и т.д. На этом этапе первичной коммуникации возникает коллективный субъект междисциплинарного моделирования.

2. Перевод дисциплинарных понятий и эмпирических данных в синергетический тезаурус . На этом этапе царит коммуникативный и семантический хаос, метафорический произвол, смысловая «игра в бисер». Любой языковый денотат, если подобрать нужный контекст, оказывается возможным именовать и аттрактором, и управляющим параметром и т.д. Этот этап создает поле контекстов и первичных связей событий и процессов.

3. Усмотрение базовых процессов, обратных связей, принципов синергетики в эмпирическом материале , что существенно сужает метафоризацию и произвол интерпретаций. Наше восприятие, да и гуманитарные науки фиксируют в первую очередь не элементы и структуры, а процессы, события, факты, явления. Элементы и структуры определяются нами как устойчивые, инвариантные объекты по отношению к различным процессам. Очевидно, что этот этап, как и предыдущий социально-исторически обусловлен, даже в естественных науках присутствует априорная теоретическая информация, не говоря уже о гуманитарных науках.

4. Согласование, сборка принципов синергетики на эмпирическом материале, в результате чего возникает «кольцо принципов». На этом этапе коммуникативный произвол еще больше ограничивается, что позволяет перейти к системному этапу — выбору конфигуратора. Описанный этап напоминает идеи логического позитивизма, поскольку идея кольца принципов корреспондирует с идеей непротиворечивости молекулярного высказывания-образа для целостного процесса, состоящего из атомарных элементов-высказываний — в нашем случае из уже проверенных ранее образов-принципов синергетики.

5. Построение структурно-функциональной когнитивной модели. Окончательное предъявление элементов, связей, структуры, функций системы. Это стандартный, но нетривиальный системный этап, с которого обычно начинают моделирование. Напомним, что в механике понятие системы материальных точек тривиально, но если мы моделируем человеческий организм, то выбор системного конфигуратора определяется типом поставленной задачи, точнее частнодисциплинарной онтологией. Свои конфигураторы у биохимика, цитолога, терапевта, анатома или рефлексолога. Аналогично для общества, которое можно описывать, и как систему множества людей-элементов, и как систему идей третьего мира К.Поппера. Поэтому в живых, человекомерных системах, обязательно возникает мультисистемное описание с последующей процедурой онтологического согласования.

6. Конструирование формальной динамической модели, фиксирующей тип уравнения, пространства состояний и т.д. Этот этап может так же нетривиально навязать неадекватную онтологию системы, т.к. способ описания с помощью избыточных средств может повлечь предсказания-химеры, которых нет в поле эксперимента, и от которых избавляться дольше, чем решать задачу. Например, сегодня подобная проблема существует в теории суперструн единой теории поля.

7. Построение «реальной» модели, т.е. уточнение свободных параметров и коэффициентов из опыта. Относительно хорошо это умеют делать в естествознании, где коэффициенты можно точно измерить, но в социо-гуманитарных науках количественные характеристики иногда весьма условны, и оперируют понятиями больше-меньше, или тенденциями. Поэтому в гуманитарных науках иногда рассматривают пучки, множества моделей со слегка отличными коэффициентами и смотрят качественное поведение сразу пучка моделей, так называемое «мягкое моделирование» (В. Арнольд). Именно так свойство «грубости», структурной устойчивости, т.е. независимости качественных результатов от вариации параметров задачи, в теории катастроф Р.Тома помогло ей укорениться в психологии и социологии.

8. Математическое решение модели. Этот этап наиболее подробно методологически разработан и слишком профессионально нагружен, чтобы обсуждать его в философском издании. Отметим лишь, что если компьютерный эксперимент реализуем, то обычно дает огромный эффект в понимании, экономит время и средства.

9. Сравнение с экспериментом, интерпретация результатов. Здесь в первую очередь проверяется прогностическая ценность модели, однако, не только во временной динамике модели, но и в детерминации ею ранее не верифицированных свойств системы.

10. Принятие решений, корректировка модели на любом из этапов, замыкание герменевтического круга моделирования. Особые рефлексивные, а часто и философские технологии, работающие с критериями, ценностями, смыслами.

Очевидно, что переходы от одного этапа к другому это, по сути, коллективный творческий процесс, в котором, в принципе, необходимо компетентное участие не только математиков и предметников, но и философов. Здесь необыкновенно велика роль междисциплинарной и межличностной коммуникации, в которой формируется и развивается коллективный субъект познавательной деятельности. Это особые технологии коллективной экспертизы, взаимообучения и принятия решении, причем в процессе синергетического моделирования представлены все формы проектно-исследовательской деятельности и образования. Подчеркнем особый статус коллективного субъекта междисциплинарного моделирования: повторить или проверить выводы междисциплинарного моделирования может только коллективный субъект, например новая команда экспертов, но не отдельный исследователь. Поэтому возникает отдельная, лежащая в сфере социально-научной коммуникации, задача мотивации и сборки подобных коллективных субъектов для выдвижения и проверки междисциплинарных гипотез.

По мере продвижения по этапам мы переходим от метафорической синергетики к строгой, и эта работа требует владения навыками философской рефлексии. Этапы 2,3,4 являются новыми, существенно синергетическими. Они проводят нас от метафорической синергетики к началам математического моделирования, делая следующий системный этап методологически обеспеченным, что переводит его из сферы искусства ближе к сфере технологии. Философская рефлексия здесь, на плохо формализуемых начальных, постановочных этапах создания модели особенно необходима. Фактически это процессы порождения теоретических идеализаций для этапов 5, 6. Ранние позитивисты назвали бы это недопустимым метафизическим этапом, а неопозитивисты усмотрели бы в этих играх с языком и феноменологией, скорее всего, процедуры поиска логической непротиворечивости описания модели. Вместе с тем, не всегда в гуманитарной сфере удается осуществить формализованные этапы 7,8, хотя построение формальной динамической модели этапа 6 иногда носит большой эвристический потенциал и может быть использовано для мягкого прогнозирования. Очевидно, что, остановка в начале пути, ограничение лишь метафорическим этапом 2, делает невозможным какое-либо моделирование, даже когнитивное. Именно в этом «застревании» состоит, на мой взгляд, болезнь современной гуманитарной синергетики.

Практическая философия и моделирование

Комплексные междисциплинарные задачи современной проектно-исследовательской деятельности используют методы постнеклассической науки. Постнеклассическая методология предполагает замыкание рефлексивной петли субъект-объектной коммуникации научно-исследовательской деятельности. Это замыкание происходит в субъектных психо-ментальных и культурно-исторических пространствах коммуникации и автокоммуникации. Нашей целью является философский анализ этапов такой рефлексии в процессах научно-исследовательской и проектной деятельности, в практике моделирования и междисциплинарной коммуникаций, исследование этапов синергетического моделирования и эстафеты сопряженных с ними когнитивных языков моделирования.

Нами выдвигается гипотеза [26] о существовании полионтичных параллелей в когнитивных пространствах практической философии и синергетической методологии, о возможности частичного перевода онтологических феноменов из разных параллелей, возможности их эвристического, конструктивного взаимодействия и использования в практике научного творчества, междисциплинарной коммуникации и принятия решений, моделирования сложных систем, проектно-исследовательской междисциплинарной практике и в современном образовании. Таким образом, осуществляется еще один подход к раскрытию актуальной мотивации и поля востребованности практической философии в наиболее сложных и компетентных человеческих практиках, что свидетельствует не только о теоретическом, но и о прикладном характере нашего исследования.

Для доказательных исследований, видимо, необходимо разработать своеобразный атлас междисциплинарных ландшафтов и навигатор в пространствах междисциплинарных коммуникации. Необходимо также выяснить возможные сценарии процессов синергетического моделирования сложных систем и проведение их философско-методологического анализа, что отчасти уже было намечено в предыдущем разделе. В общем случае необходимо подробно рассмотреть эволюцию языковых тезаурусов от этапа к этапу в синергетическом моделировании, смену культурных и когнитивных контекстов и установок. Создать технологию матрицы перевода в рамках гомологических рядов, отвечающих разным этапам моделирования, когнитивным и культурным этапам развития субъекта, социума, истории философии. Все это позволит сохранять цели и ценности разных этапов и осуществлять самосогласованное, адаптивное моделирование реальности без утраты культурных ценностных измерений всех участников проекта. Тем самым возможно осуществление коэволюции, рефлексивного темпорального сопряжения проектной человеческой активности в ценностных исторических пространствах культуры.

Наша конструктивная гипотеза заключается в том, что этапы синергетического моделирования, в некотором смысле, подобны историческим этапам развития философской эпистемологии и философии культуры, поскольку гомологичны этапам взаимодействия разных дисциплинарных культур, взаимодействию их норм, ценностей, их онтологий, а так же процессам познания и социальнонаучным эстафетам.

Мы полагаем, что каждый этап моделирования может быть одновременно описан в трех модусах, трех параллельных гомологических рядах:

  1. этапы синергетического моделирования, как деятельностно-технологические этапы,
  2. этапы когнитивной эволюции человека в познании мира и самого себя,
  3. этапы эволюции социальной коммуникации, отраженной в философии культуры.

Два последних ряда являются предметами философских наук и в диалоге с первым осуществляют стратегию приложения практической философии к синергетике. Действительно, легко видеть, что в процессе синергетического моделирования каждый этап имеет свои стадии. Первой реализуется стадия культурно-семиотическая, знаковая стадия, затем формируются образы пространства и времени, затем реляционная (причинно-следственные категории), затем системноструктурная, последняя — формализованная стадия. Причем на каждом этапе моделирования доминирует одна из таких стадий, более того, далеко не всегда возможно, да и необходимо пройти все стадии или этапы.

Таким образом, процесс движения по этапам моделирования можно представить как эстафету онтологических пространств, коммуникативных практик, норм и ценностей, что и изучает история философии и философия науки и культуры. Это деформации и смены категориальных познавательных сетей по В.С. Степину, и куматоидные волны социальных эстафет по М.В.Розову [27] , и многое другое. Однако, подчеркнем одно принципиальное отличие — в процессе моделировании все этапы проходятся в реальном времени коллективом участников междисциплинарного проекта относительно быстро, а не веками и десятилетиями, как в истории философии. Приходится перевоплощаться, модельер должен быть, то метафизиком, то позитивистом, то релятивистом, то постммодернистом в фазах деконструкции этапа; а еще надо поменять оптику в случае герменевтических возвратов к предыдущим этапам. Возникает своеобразный философский театр, где все должны попробовать чужие роли и совместно отрефлексировать изменения своих взглядов, в духе теории рефлексивных игр и принятия коллективных решений. Здесь наработанный тысячелетиями опыт философии трудно переоценить. В этом, очевидно, и будет заключаться ценность командной работы предметников и философов, в этом соль практической философии, в этом, на наш взгляд, один из мотивов ее возрождения в ХХI веке.

И сегодня можно назвать несколько синергетических команд естественников, математиков и гуманитариев, создающих великолепные модели истории, экономики. В командах происходит взаимное обучение, а также выработка методологических принципов моделирования. Подобные процессы воспитания синергетиков из гуманитариев и естественников приняты в Международной ассоциации изучения динамического хаоса в науках о жизни и психологии в США, где все психологи, медики, биологи должны пройти курсы математического моделирования. Вот в таком сообществе можно говорить о высокой синергетической культуре междисциплинарного общения.

Заключение

Синергетическая методология далеко не исчерпывает методологию постнеклассической науки, так же как синергетика не исчерпывает всех междисциплинарных подходов в становящейся постнеклассической парадигме, Активно взаимодействуя с другими междисциплинарными направлениями, методология синергетики имеет в новой парадигме свою зону ответственности — это практики моделирования сложных саморазвивающихся систем. Ее методы все больше востребуются не только в естествознании, но и в науках о человеке, где моделирование плохо формализуемых систем по настоящему только разворачивается. Постнеклассическая междисциплинарная коммуникация предполагает осмысленное использование трансдисциплинарных языков разного уровня, начиная от обыденного языка, языков универсалий телесности и культуры и, кончая, символическими языками искусства и категориями философии. Среди них формализуемые языки синергетики и математики наиболее близки современной теоретической науке, причем принципы синергетики формулируются в наиболее мягких формах, адаптированных для применения в антропной сфере. Нельзя так же забывать, и тот факт, что методологическая культура была наиболее развита в философии науки на базе естествознания, и именно она наследуется и дополняется синергетикой, выросшей из эволюционного естествознания.

В настоящее время синергетическая методология сопрягается с другими методологическими традициями — оргпроектированием, НЛП, рефлексивным управлением. Именно поэтому полагается, что сегодня синергетика является центром кристаллизации, ядром постнеклассической парадигмы, однако она не может развиваться без философской рефлексии и взаимодействия с другими междисциплинарными направлениями и языками.

Опубликовано: Постнеклассика: философия, наука, культура. / СПб.: Издательский дом «Миръ», 2009. с.361-396

Публикуется на www.intelros.ru по согласованию с автором

[1] Буданов В.Г. Синергетическая методология // Вопр. философии. 2006. № 5. С. 79–94.

[2] Розин В.М. Методология. Становление и современное состояние. М.: РАО МСПИ, 2005.

[3] Щедровицкий Г.П. Философия. Наука. Методология. М.: Шк. Культ. политики, 1997.

[4] Аршинов В.И., Буданов В.Г. Синергетика: эволюционный аспект // Самоорганизация и наука. М., 1994. С. 229–243.

[5] Степин В.С. Теоретическое знание. М.: Прогресс-Традиция, 2000.

[6] Аршинов В.И ., Буданов В.Г. Синергетика как инструмент формирования новой картины мира // Человек, наука, цивилизация: К 70-летию акад. В.С.Степина / Отв. ред И.Т.Касавин. М., 2004. С. 428–463.

[7] Буданов В.Г. Методология синергетики в постнеклассической науке и в образовании. ИФ РАН, М.: УРСС, 2007. 232 с. .глава 2.

[8] Ласло Э. Основания трансдисциплинарной единой теории /Пер. Ю.А.Данилова // Синергетическая парадигма. М., 2000. С. 326–333.

[9] Буданов В.Г. Междисциплинарные технологии и принципы синергетики // Человек – Философия – Гуманизм: Материалы докладов и выступлений Первого Российского философского конгресса (4-7 июня 1997). Том VIII. СПб., 1998. С. 29 – 33.

[10] Буданов В.Г. Трансдисциплинарное образование, технологии и принципы синергетики // Синергетическая парадигма /Под ред. В.И.Аршинова, В.Г.Буданова, В.Э.Войцеховича. М., 2000. С. 285–304.

[11] Буданов В.Г. Синергетика коммуникативных сценариев // Синергетическая парадигма. Когнитивно-коммуникативные стратегии современного научного познания /Ред.: Л.П.Киященко, П.Д.Тищенко. М., 2004. С. 444–461.

[12] Буданов В. Г. Методологические принципы синергетики // Новое в синергетики / Под ред Г.Г. Малинецкого. М.: Наука, 2006. С.312-322

[13] Буданов В.Г. Методология синергетики в постнеклассической науке и в образовании. ИФ РАН, М.: УРСС, 2007. 232 с.

[14] Нелинейный мир постнеклассической науки. Материалы круглого стола // Синергетическая парадигма / Отв. ред. Л.П. Киященко. М., 2004

[15] См.: Киященко Л.П. (ред) Полилог в кругу проблем субъект-объектного единства. Материалы круглого стола // Философские науки. № 9, №10. 2006.

[16] Буданов В.Г., Мелехова О.П . Концепции современного естествознания: Учеб. пособие. М., 1999; Буданов В.Г. Синергетическая методология в постнеклассической науке и образовании // Синергетическая парадигма. Синергетика в образовании /Отв. ред. В.Г. Буданов. М., 2006 . С. 174-211; Буданов В.Г. Синергетические механизмы роста научного знания и культура // Философия науки. Вып. 2. М., 1996. С.191 – 199; Буданов В.Г. Принципы синергетики и язык. Синергетика человекомерной реальности // Философия науки. М., 2002. № 8. С. 340–354. Буданов В.Г. Принципы синергетики и управление кризисом // Синергетическая парадигма: Человек и общество в условиях нестабильности /Под ред. О.Н.Астафьевой. М., 2003. С. 86–99; Буданов В.Г. Методология синергетики в постнеклассической науке и в образовании. ИФ РАН, М.: УРСС, 2007.

[17] Аршинов В.И., Буданов В.Г., Войцехович В.Э. Принципы процессов становления в синергетике // Тр. XI Междунар. конф. «Логика, методология, философия науки». Т. VII. М.–Обнинск, 1995. С. 3–7.

[18] Буданов В.Г. Трансдисциплинарное образование, технологии и принципы синергетики // Синергетическая парадигма /Под ред. В.И.Аршинова, В.Г.Буданова, В.Э.Войцеховича. М., 2000. С. 285–304. Буданов В.Г., Мелехова О.П . Концепции современного естествознания: Учеб. пособие. М., 1999.

[19] Хакен Г. Синергетика. Иерархии неустойчивостей в самоорганизующихся системах и устройствах. М.: Мир, 1984.

[20] Арнольд В.И. Математические методы классической механики. М.: Наука, 1979.

[21] Буданов В. Г. Методологические принципы синергетики // Новое в синергетики / Под ред Г.Г. Малинецкого. М.: Наука, 2006. С.312-322

[22] Чернавский Д.С. Синергетика и информация (динамическая теория информации). Изд. 2-ое доп. и испр. М.: Едиториал УРСС, 2004. 288 с.

[23] Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г., Самарский А.А. Нестационарные структуры и диффузионный хаос. М.: Наука, 1992.

[24] Пойзнер Б.Н., Ситникова Д.Л. Воспроизводство неустойчивости в культуре: репликационный аспект. // Синергетическая парадигма. Когнитивно-коммуникативные стратегии современного научного познания. М., 2004. С. 479–490.

[25] Буданов В.Г. Методология синергетики в постнеклассической наке и в образовании. М.:УРСС, 2007, с.232

[26] Буданов В.Г. Синергетическое моделирование сложных систем, и практическая философия //Философские науки. №5, 2007, с.57-66.

[27] Розов М .А. К методологии анализа этоса науки // Философия науки. Вып. 11. Этос науки на рубеже веков /Отв. ред. Л.П.Киященко. М., 2005. С.137-154.