Russian
| English
"Куда идет мир? Каково будущее науки? Как "объять необъятное", получая образование - высшее, среднее, начальное? Как преодолеть "пропасть двух культур" - естественнонаучной и гуманитарной? Как создать и вырастить научную школу? Какова структура нашего познания? Как управлять риском? Можно ли с единой точки зрения взглянуть на проблемы математики и экономики, физики и психологии, компьютерных наук и географии, техники и философии?"

«САМООРГАНИЗУЮЩАЯСЯ ВСЕЛЕННАЯ» 
Эрих Янч

Время самообновления. В истории нашего века сравнительно короткий период с середины 60-х до начала 70-х годов занимает особое положение. В это время традиционные социальные и политические? институты были подвергнуты сомнению. Протесты против различного рода ограничений в жизни людей, поначалу вряд ли воспринимавшиеся всерьез, превратились в мощные процессы, под влиянием которых начала формироваться потребность в поиске новых структур. Общим для всех этих событий было то, что их участники придавали важное значение самоопределению и самоорганизации, открытости и пластичности, свободной эволюции социальных структур.

Время самообновления. В истории нашего века сравнительно короткий период с середины 60-х до начала 70-х годов занимает особое положение. В это время традиционные социальные и политические? институты были подвергнуты сомнению. Протесты против различного рода ограничений в жизни людей, поначалу вряд ли воспринимавшиеся всерьез, превратились в мощные процессы, под влиянием которых начала формироваться потребность в поиске новых структур. Общим для всех этих событий было то, что их участники придавали важное значение самоопределению и самоорганизации, открытости и пластичности, свободной эволюции социальных структур.

Возросшая потребность в свободе слова стала той искрой, из которой возгорелось пламя, охватившее студенческий городок в Беркли в 1964-1965 учебном году. Вслед за этим началось движение, подобно лесному пожару охватившее все существенные аспекты индивидуальной и социальной жизни и распространившееся по всему миру. Протест против закостеневших университетских порядков и отчуждения академической жизни от реальности, расширяясь, дошел до требования переустройства социальной жизни. Бывшие у власти правительства, особенно Франции и Чехословакии, оказались прижатыми к стене в историческом 1968 году. Тогда же китайская культурная революция разрушила начавшие было окаменевать структуры; Мао Цзэдун был единственным государственным деятелем, который приветствовал эту динамику самоорганизации.

Но вот буря пронеслась, социальные и политические структуры с виду уцелели, но мир стал уже другим. Интеллектуальные и духовные структуры претерпели изменения; под влиянием новых ценностей начали формироваться новые путеводные образы. Международная политика великих держав утратила свое ведущее значение и потерпела одно за другим несколько сокрушительных поражений — не только во Вьетнаме. Исчезли диктаторские режимы в Греции, Португалии и Испании. Даже Уотергейт был, по-видимому, результатом морального обновления. Вопрос о гражданских правах лавиной обрушился на Америку, достиг вскоре Африки и даже Среднего Востока, породив международную дискуссию о правах человека. Хельсинкская конференция неожиданно стала бумерангом для диктаторских режимов Восточной Европы. Даже затвердевшие структуры мировой торговли, дававшие односторонние преимущества высокоразвитым индустриальным державам, впервые оказались частично разрушенными во время нефтяного кризиса 1973 года. Можно не сомневаться, что мы стоим на пороге еще более глубоких изменений в этой области.

Политические и экономические аспекты тех бурных лет имеют наиболее явные последствия, но значимы не только они, Еще большую важность приобретает интенсификация мыслительных процессов, которая ведет к пересмотру индивидуальных отношений человека со средой, включающей в себя не только природное, но и человеческое окружение индивида. Если политические и экономические изменения представляют собой макроскопические аспекты систем человеческой жизни, то отношения с окружающей средой относятся к ее микроскопическим аспектам. И те, и другие надлежит рассматривать вместе. Возросшее осознание неразрывного единства с природой превратило понятие экосистемы из достояния узкого круга посвященных в популярную практическую категорию. Ныне представлениям о защите окружающей среды придается такое же значение — и на национальном, и на международном уровнях, = как и- тем экономическим понятиям, с которыми эти представления зачастую не очень хорошо согласуются. Представления о защите окружающей среды вкупе с осознанием ограниченности невозрбновляемых ресурсов нередко усиливают глубокие перемены в традиционных экономических процессах, особенно в направлении замены линейной, односторонней (не предполагающей переработки отходов) экономики на рециркуляционную экономику с переработкой отходов. Речь идет не только о защите природы от негативных последствий технического прогресса, но и о защите потребителя = идее, привнесенной в социальное мышление американцев почти исключительно стараниями Ральфа Надера.

Возможно, наиболее значительным изменением в сознании населения следует считать пришедшее понимание того, что развитие технологии отнюдь не является внешним выражением слепого прогресса, KQTOpbra нельзя удерживать, но продуктом человеческого разума. Величайшим технологическим триумфом рассматриваемого периода по праву можно считать не высадку человека на поверхности Луны, спланированную и осуществленную с невероятной точностью, а отказ под давлением общественного мнения от проекта американского пассажирского сверхзвукового самолета.

Это новое отношение к технологии стало наиболее значительным достижением той заботы о будущем, которая в описываемый период стала занимать многих людей. Основания для сознательного и открытого планирования будущего были заложены Бертраном де Ювенелем (1967) с его понятием «futurihies» (множества возможных будущих) [1] и Денисом Габором (1963) с его концепцией нормативного предсказания -»Сотворим Будущее!» [2]. Эти понятия и представления развенчали линейные модели ‘будущего, хотя пока они сохраняют влияние в экономическом и особенно эконометрическом мышлении. В то время как традиционная экономическая политика основана на постоянстве экономических и социальных структур и оперирует макроскопическими средними, отношение к будущему, ориентированное на процессы, признает за индивидуальным воображением, индивидуальным видением силу, способную вызывать резонанс в умах многих людей и изменять структуру реальности.

Начиная с 60-х годов внешние отношения в человеческом мире изменились в сторону все более ясного осознания связи с окружающей средой во времени и пространстве. Изменение претерпели и внутренние отношения человека с самим собой. Неподдельный интерес к человеческому сознанию как таковому, все возрастающий интерес к «гуманистической» (т.е. нередукционистской) психологии, методы «холистической» медицины, частично импортированные из других культур (например, акупунктура), интерес к недуалистическим философиям Дальнего Востока и таким понятиям, как медитация и йога, — все это также проявления метафлуктуации, затронувшей значительную часть человечества в начале последней трети XX века. По крайней мере в Беркли, где написана данная книга, в этом нет ни малейшего сомнения. Здесь, в Беркли, многие признаки упомянутой метафлуктуации все еще остаются открытыми для изучения даже после того, как большая волна схлынула, лишившись энергии. Здесь их история рассматривается как нечто единое, неразложимое на отдельные части.

Самообновление науки

При взгляде со стороны кажется, будто наука выстояла против перипетий недавнего бурного прошлого, не претерпев сколько-нибудь значительных изменений. Тенденция к интердисциплинарному преподаванию и исследованию, равно как и тенденция к большей соотнесенности с реальностью, большей близости к ней, тихо угасала. Специализированные университетские центры и программы, возникшие было в ответ на давление со стороны студентов, отошли в небытие, а позиции узко специальных факультетов укрепились. Редукционизм воцарился повсеместно.

Такого рода академический редукционизм следует рассматривать не только как абстрактный процесс сокращения интеллектуального поля, но и как явление социальной значимости. Это стало мне ясно, когда до Беркли дошла сценическая версия одного антропологического отчета (пьеса Питера Брука под названием «The Ik»). Британский антрополог Колин Тернбулл (1972) обнаружил в горах Уганды небольшое, насчитывавшее всего около тысячи человек, племя, которое, после того как его вытеснили с охотничьих угодий, оказалось неспособным обеспечить себе существование на новом месте [З]. По модели Тернбулла, человеческие отношения в ситуации голода и отчаяния выродились в самый неприкрытый эгоизм. Матери гнали своих детей с теплых мест у очага, умирающих стариков выбрасывали из жилищ, чтобы сэкономить на ритуальной поминальной трапезе, воровство и грабеж стали практически единственной стратегией выживания. Каждый противостоял каждому. В дискуссиях с членами факультета и студентами Тернбулл всячески подчеркивал свое убеждение в том, что именно в таком типе поведения ему удалось открыть «истинную природу человека», которая проявляется, стоит лишь стряхнуть с себя наносную роскошь культуры. В истории этого племени он даже усмотрел предтечу генерального пути эволюции. В качестве аргумента, подкрепляющего его теорию, Тернбулл не только ссылался на свое собственное «обращение» в идеологию абсолютного эгоизма и удовлетворения физических потребностей, но и на то, что уголовные преступники, отбывавшие наказание в британских тюрьмах, проявили большой интерес к пьесе Питера Брука и особенно к точке зрения самого Тернбулла, высказанной им в последовавших обсуждениях. Возможность возвыситься от низкопробной уголовщины до авангарда эволюции вызывала у некоторых заключенных чувство гордости. Однако верха абсурда научная дискуссия достигла в выступлении одного престарелого профессора. Глубоко растроганный, он признал, что точка зрения Тернбулла явилась для него откровением, осуществлением мечты всей его жизни, поскольку ему стало ясно, что редукционистская наука, сводящая человеческую жизнь к «объективным» функциям выживания, всегда находилась на острие эволюции. Параллель между наукой, ограблением и убийством висела в воздухе, не встречая каких-либо возражений, и новое глубокое откровение заставляло участников дискуссии трепетать от охватившего их благоговейного восторга. Вместо ужаса я увидел сияющие глаза и открытые от изумления рты.

Тем не менее наука также подверглась глубокой и всеобъемлющей реструктуризации. Области науки, на протяжении долгого времени остававшиеся предметом чистых спекуляций, особенно космология, обрели эмпирические основания. Открытие реликтового фонового излучения в 1965 году (предсказано оно было еще в 1948-м) впервые выявило возможность исследования эффекта, берущего начало от первых, горячих, этапов развития Вселенной. В том же 1965 году были открыты первые четыре объекта, относительно которых астрономы с достаточным основанием полагали, что это — «черные дыры». Вновь открытые объекты позволяли непосредственно изучать фазу «смерти» звезд.

В 1965 году были также разработаны микропалеонтологические лабораторные методы, позволившие открыть в очень древней осадочной породе микроископаемые. То, что прежде было чистой спекуляцией, а именно история древнейших форм жизни на Земле, впервые стало доступно прямому наблюдению. Древнейшие из микроископаемых, идентифицированные с тех пор, имеют возраст 3500 млн лет и относятся ко времени, когда наша планета была в четыре раза моложе, чем теперь.

Необычайно расширились границы пространства и времени, доступные наблюдению. Наибольшая теоретически наблюдаемая пространственная протяженность ограничена так называемым горизонтом событий; она определяется скоростью света и в настоящее время составляет около 1,5 » 1026 м. Действительно, были обнаружены, так называемые квазары (объекты, испускающие необычайно сильное излучение), находящиеся примерно на таком расстоянии. Квазары удаляются от нас со скоростью, составляющей 90% скорости света (последняя равна 300 тыс. км/с), и наблюдаемый нами свет от них был испущен во времена, когда Вселенная была в восемь раз моложе, чем теперь. Наименьшая наблюдаемая длина имеет порядок величины 10~17 м, что соответствует размерам субатомных частиц. Наибольший наблюдаемый период времени благодаря уже упоминавшемуся фоновому излучению есть возраст Вселенной, составляющий 5 » 1017 с. Наименьшая в настоящее время продожительность временного интервала соответствует средней продолжительности жизни чрезвычайно нестабильных субатомных частиц и составляет около 3 » 10~24 с; такие субатомные частицы мало похожи на «настоящие» частицы и получили название «резонансов». Пространственная протяженность, доступная наблюдению человека, составляет 1043 м, а временная протяженность — 1041 с. Сходство этих чисел поразительно и невольно заставляет вспомнить британского лауреата Нобелевской премии П.А.М. Дирака, высказавшего гипотезу о существовании корреляции между макрокосмом и микрокосмом, осуществляемой безразмерными множителями порядка 1040. В этом невообразимо протяженном пространственно-временном континууме возникают взаимосвязи и паттерны, носящие по преимуществу динамический характер и впервые позволившие заложить научные основы идеи всеобщей, открытой эволюции, осуществляющей взаимосвязь между многими нередуцируемыми уровнями.

Однако прежде всего без каких-либо инструментальных методов нашей жизни касается то, что составляет круг непосредственного человеческого опыта. В этом круге мы обнаруживаем явления биологической, социальной и культурной жизни. Неисчерпаемое разнообразие форм, с которым мы сталкиваемся здесь, до сих пор было предметом главным образом эмпирических исследований. Формы наблюдались, классифицировались, упорядочивались, особенное включалось в более общий контекст. Структуры классифицировались в соответствии с усредненными особенностями, очищенными от. большого числа отдельных наблюдений. Такой структурно-ориентированный подход подразумевал дополнительное временное измерение = с теорией естественного отбора Дарвина и эволюцией биологических видов.

Акценты на структуру, адаптацию и динамическое равновесие (стационарный поток) были характерны для раннего этапа развития кибернетики и системного анализа. В этих взаимозависимых областях исследования, активно развивавшихся с 40-х годов, было достигнуто глубокое понимание того, как можно стабилизировать данные структуры и поддерживать их бесконечно долго. Именно эти проблемы находятся в центре внимания в технологии, и именно в решении проблем управления сложными машинами и механизмами кибернетика и специализированная теория систем достигли триумфа. Однако в биологических и социальных системах этот тип управления (называемый также отрицательной обратной связью) — лишь одна сторона монеты. Никакую живую структуру невозможно стабилизировать перманентно. Другая сторона монеты связана с положительной обратной связью или с дестабилизацией и развитием новых форм. Достижение полного синтеза обоих аспектов было мечтой основателей упомянутых выше теорий Норберта Винера и Людвига фон Берталанфи (1968) [4]. Их интуитивно правильные формулировки, подкрепленные и развитые Эрвином Ласло (1972) и другими, в наше время получают все более прочную научную основу [5]. В 50-е годы возникновение молекулярной биологии открыло возможности создания базиса теоретической биологии. Но развитие молекулярной биологии тормозилось редукционистской установкой, и связь с явлениями макроскопического порядка так и не была установлена. Структура ДНК и гены не содержат в себе жизнь организма, который развивается, используя эту информацию.

Биологические и социальные системы требуют понимания таких явлений, как самоорганизация и саморегуляция, когерентное поведение, синхронизированное со структурными изменениями, индивидуальность, коммуникативная связь с окружающей средой и симбиоз, морфогенез, пространственная и временная связь в процессе эволюции. Первый шаг в этом направлении был сделан, когда удалось достичь нового понимания динамики природных систем. Этому в 20-е годы предшествовали «философия процесса» Альфреда Норта Уайтхеда (1929) [6] и концепция холизма в эволюции, разработанная южноафриканским государственным деятелем Яном Смэт-сом (1926) [7].

В точной формулировке новое понимание, о котором мы только что упомянули, можно охарактеризовать как ориентированное на процесс, в отличие от основного акцента на компоненты «жесткой» системы и состоящие из них структуры. Эти две перспективы асимметричны по своим последствиям: в то время как жесткая пространственная структура, например машина, в значительной степени определяет процессы, которые могут в ней происходить, свободная игра и взаимодействие процессов могут привести к открытой эволюции структур. Во втором случае основной акцент делается на становлении — и даже бытие возникает в динамических системах как аспект становления. Понятие самой системы более не связано с конкретной пространственной или пространственно-временной структурой, с изменением конфигурации тех или иных компонент, равно как и с наборами внутренних или внешних отношений. Система теперь предстает перед нами скорее как набор когерентных, развивающихся, интерактивных процессов, проявляющихся во времени в виде глобально устойчивых структура не имеющих ничего общего ни с равновесием, ни с жесткостью технологических структур. Например, гусеница и бабочка представляют собой две временно стабилизированные структуры в когерентной эволюции одной и той же системы. В 1947 году Конрад Уоддингтон уже ввел понятие эпигенетического процесса — селективного и синхронизированного использования процессами жизни структурно закодированной генетической информации во взаимодействии/с окружающей средой. Это понятие имеет основное значение для ориентированного на процесс подхода к биологии [8].

Решающий прорыв произошел в 1967 году — с появлением теории так называемых диссипативных структур (впоследствии эмпирически подтвержденной) и открытия лежащего в их основе нового упорядочивающего принципа. Этот принцип, получивший название «порядок через флуктуацию», проявляется вне термодинамической ветви в сильно неравновесной системе и включает в себя некоторые автокаталитические ступени. Развитие теории диссипативных структур стало триумфом Ильи Пригожина и его сотрудников в Брюсселе и Остине (штат Техас). Не столь давно этот цикл работ был изложен в обширной монографии [9].

Примерно в то же время в Биологической компьютерной лаборатории Иллиной-ского университета, функционировавшей с 1956-го по 1976 год под руководством ее основателя Хейнца фон Фёрстера, много внимания уделялось самоорганизации. Завершением цикла работ [10] стала новая формулировка свойств живых систем. Центральное понятие — автопоэзис — было введено в 1973 году чилийскими биологами Умберто Матурана и Франсиско Варела и развито в сотрудничестве с Рикардо Урибе [11, 12]. Автопоэзис относится к характеристике живых систем, которые непрерывно обновляются и регулируют этот процесс так, чтобы поддерживать целостность своей структуры. В то время как машина жестко нацелена на выпуск определенного продукта, биологическая клетка функционирует главным образом для самообновления. Процессы развития (анаболические) и деградации (катаболические) протекают одновременно. В процессах автопоэзиса неразличимо растворяются не только эволюция системы, но и ее существование в виде специфической структуры. В области живого есть мало такого, что было бы твердым и жестким. Автопоэтическая структура возникает в результате взаимодействия многих процессов. Саморефе-рентность также стала ключевым понятием для нового воззрения на функции мозга [13] и человеческого сознания [14].

Возникли и новые объяснения происхождения жизни на Земле. Жак Моно (1971) высказал мнение, что случайная комбинация молекул дала толчок возникновению жизни как в высшей степени маловероятному результату, возможно, единственному во всей Вселенной [15]. Ханс Кун (1973) модифицировал это положение, предложив идею случайной репродукции путем стереоспецифичности [16]. Новый увлекательный подход признает решающую роль каталитического подкрепления и акселерации процессов, инициацию которых можно считать случайной. Те же фундаментальные принципы самоорганизации, которые допускают образование диссипативных структур, и та же нелинейная неравновесная термодинамика представляются ныне важными факторами в образовании полимеров из мономеров [17], в синтезе сложных нуклео-кислот и белков при саморепродукции гиперциклов [18, 19]. Если Моно рассматривал случайность и необходимость последовательно (вслед за чрезвычайно маловероятным событием — возникновением саморепродуцирующейся молекулярной комбинации -наступает абсолютная необходимость выживания), то теперь случайность и необходимость выступают как взаимно дополнительные (комплементарные) принципы, М. Эйген и Р. Винклер (1975) усмотрели эту комплементарность в том, что случайные процессы улавливаются сетью «правил игры», или законов природы, возникающих в результате естественного отбора, который понимается в духе недифференцированного дарвинизма [20]. Одностороннее применение дарвиновского принципа естественного отбора часто приводит к образу «слепой» эволюции, производящей на свет всевозможных бессмысленных уродцев и сохраняющей целесообразные структуры, испытывая свои произведения на окружающей среде. Как будто окружающая среда сама не подвержена эволюции! Эволюция, по крайней мере в области живого, по существу представляет собой процесс обучения. Более тонкий подход к динамике самоорганизации учитывает число степеней свободы, которым располагает система для самоопределения своей собственной эволюции и для нахождения временной оптимальной устойчивости при заданных условиях. Эволюция остается открытым процессом и в отношении своих продуктов, и в отношении правил игры. Результат этой открытости — самопревращение эволюции в «метаэволюцию», т.е. эволюцию эволюционных механизмов и принципов.

Интуитивные попытки применения тех же фундаментальных принципов самоорганизации, которые были обнаружены на уровне простых химических и доклеточных систем, к эволюции на высших уровнях привели к поразительно реалистическим описаниям динамики экологических, социобиологических и социокультурных систем [21, 22, 23]. Наряду с «вертикальными» аспектами эволюции (когерентности во времени) на первый план выдвигаются «горизонтальные» аспекты, включая такие явления, как коммуникация, симбиоз и коэволюция. Даже система «биосфера плюс атмосфера» ныне представляется как самоорганизующаяся и саморегулирующаяся [24]. Направленность эволюции ныне может быть понята post hoc как результат взаимодействия случайности и необходимости [25]; необходимость вводится системой ограничений, которые сами являются результатом эволюции. Биологическая, социо-биологическая и социокультурная эволюции ныне представляются как связанные гомологическими, а не просто аналогичными принципами (т.е. принципами, имеющими общность происхождения, а не просто формальное сходство). Такой подход не должен казаться неожиданным, поскольку вся Вселенная развивалась и развилась из единого начала.

Новый тип науки, о котором мы говорим, ориентированный главным образом на модели жизни, а не на механические модели, дает толчок к изменениям не только в самой науке. Тематически и эпистемологически новая наука связана с теми явлениями, которые я обозначил как метафлуктуацию, потрясшую мир. Основные темы остаются неизменными, но теперь они формулируются по-новому. На первый план выдвигаются такие понятия, как самоопределение, самоорганизация и самообновление; признается систематическая взаимосвязанность природной динамики в пространстве и времени;

логический акцент переносится с пространственных структур на процессы; выделяется роль флуктуаций, которые упраздняют закон больших чисел и дают шанс индивиду с его созидательным творческим воображением; усиливается внимание к открытости, творческому характеру эволюции, в которой ни отдельные структуры, возникающие и погибающие, ни конечный результат не предопределены.

Естествознание готово признать эти принципы как общие законы природы. Если эти принципы применить к людям и их системам жизни, то они предстанут перед нами как основы глубоко естественного образа жизни. Дуалистический раскол на природу и культуру может теперь оказаться преодоленным. В выходе за пределы прежних жестких рамок в самопревращении природных процессов заключена радость, радость жизни. Во взаимосвязанности с другими процессами в ходе всеобщей эволюции есть смысл, смысл жизни. Мы не являемся беспомощными объектами эволюции, мы и есть эволюция. Когда наука, подббно многим другим аспектам человеческой жизни, оказывается затронутой метафлуктуацией, она преодолевает отчужденность от жизни человека и вносит свой вклад в радость и смысл жизни. Моя книга посвящена в первую очередь изложению некоторых аспектов этой новой роли науки.

Центральное место в моей аргументации занимает тезис о взаимосвязанности. Его невозможно постичь в статике, он возникает в динамике самоорганизации на многих уровнях эволюции. На каждом уровне процессы самоорганизации находятся «на старте», готовые прийти в движение при любом случайном событии, если будут созданы подходящие условия, и ускорить, или сделать возможным прежде всего возникновение сложного порядка. Начальные условия, о которых идет речь, ограничены сравнительно узкими пределами, о чем мы догадываемся по нашим тщетным поискам жизни в Солнечной сдстеме. Но коль скоро эти условия имеют место (в той фазе космической эволюции, когда произошло рождение галактик и звезд, или на ранних этапах жизни на Земле), эти условия сами становятся объектом эволюции. Эволюция дифференцирует макроскопические и микроскопические системы посредством коэволюции. То, что микроскопические системы являются всего лишь подсистемами макроскопических систем, как и то, что макроскопические системы предстают перед нами в виде «окружающей среды» для микроскопических систем, происходит от статического понимания, которое стремится представить мир в дуалистических терминах. В частности, сама жизнь создает макроскопические условия для своей дальнейшей эволюции, или, если подходить с другой стороны, биосфера создает свою собственную микроскопическую жизнь. Микро- и макрокосм являются аспектами одной и той же единой и объединяющей эволюции. Жизнь представляется теперь не просто разворачивающейся во Вселенной — сама Вселенная становится все более живой.

Краткое содержание книги

Центральными аспектами возникающей парадигмы самоорганизации являются, во-первых, специфическая динамика системных процессов, во-вторых, непрерывное изменение и тем самым коэволюция с окружающей средой и, в-третьих, самопревращение, эволюция эволюционных процессов. В первых трех частях книги основное внимание сосредоточено на этих трех аспектах. В последней части в рамках центральной идеи о творческом характере эволюции формулируются некоторые выводы, которые могут оказаться полезными для мира людей.

Часть первая. Самоорганизация: динамика природных систем. Эта часть посвящена рассмотрению типичной динамики самоорганизации когерентных систем, развивающихся через последовательность структур и поддерживающих свою целостность. К этому типу принадлежат биологические и социальные системы. Простейшим уровнем, на котором может быть рассмотрена динамика такого рода, является уровень диссипативных структур, возникающих в самоорганизующихся и самообновляющихся химических реакциях.

В главе 1 «Макроскопический порядок» в общих чертах обрисован происходящий в западной науке сдвиг от статически ориентированных структур к динамике мышления, ориентированного на процесс. Классическая динамика рассматривала понятие изолированных частиц. Термодинамика ознаменовала переход к мышлению, ориентированному на процесс, путем введения необратимости или направленности процессов во времени. Симметрия во времени оказалась нарушена, прошлое — отделено от будущего, а макроскопический мир обрел историю. Наконец, с появлением нелинейной неравновесной термодинамики была нарушена и пространственная симметрия, рассмотрение перешло на новый уровень макроскопического порядка — уровень кооперативных явлений, приводящих к спонтанному образованию и эволюции структур. Законы физики обретают новое значение при таком макроскопическом порядке. Там, где ранее предполагалось господство случайных процессов, вступает в игру новый упорядочивающий принцип, называемый «порядок через флуктуацию».

Глава 2 «Диссипативные структуры: автопоэзис» посвящена обсуждению основных условий динамического существования неравновесных структур. Эти основные условия — частичная открытость по отношению к окружающей среде, неравновесное состояние макроскопической системы и автокаталитическое подкрепление некоторых стадий в цепи явлений, образующих процесс, — повторяются и на других уровнях самоорганизующихся систем. Равновесие выступает как эквивалент стагнации и смерти. Сильная неравновесность, поддерживаемая самоорганизующимися процессами, в свою очередь поддерживается непрерывным обменом веществом и энергией с окружающей средой, иначе говоря, метаболизмом. Динамика таких глобально устойчивых, но никогда не приходящих в состояние покоя структур получила название «автопоэзис» (самопроизводство или самообновление). Автопоэтическая система нацелена в первую очередь не на производство какого бы то ни было продукта, а на свое собственное самообновление в той же ориентированной на процесс структуре. Автопоэзис представляет собой выражение фундаментальной дополнительности структуры и функции, гибкости и пластичности, обусловленных динамическими отношениями, через-которые становится возможной самоорганизация. Автопоэтическая система характеризуется некоторой автономией по отношению к окружающей среде, что можно понимать как примитивную форму сознания, соответствующую уровню существования системы. Например, размеры диссипативной структуры не зависят от размеров окружающей среды, коль скоро последние достаточно велики для того, чтобы не препятствовать формированию структуры.

В главе 3 «Порядок через флуктуацию: эволюция системы» рассматривается эволюция неравновесных систем через последовательность автопоэтических структур. Основные условия — те же, что и для автопоэзиса: открытость, сильная неравновесность и автокатализ. Существенная особенность состоит во внутреннем подкреплении флуктуаций (автокатализом), в результате чего система в конце концов преодолевает порог неустойчивости и переходит в новую структуру. При таком переходе главную роль играют не макроскопические средние, а внутреннее усиление и взрывное нарастание флуктуаций, вначале весьма малых. Иначе говоря, принцип творческой индивидуальности одерживает верх над коллективным принципом в этой инновационной стадии. Коллектив всегда пытается подавить флуктуацию, и в зависимости от связи между подсистемами жизнь старой структуры может быть существенно продлена. На стадии рождения новых структур остается в силе принцип максимального производства энтропии: система не постоит ни перед какими затратами, если результатом будет возникновение новой структуры. Однако то, какая структура будет порождена, не предопределено. На уровне автопоэтического существования в игру вступает новый вариант макроскопической неопределенности. Будущая эволюция такой системы не может быть предсказана с абсолютной определенностью; будущая эволюция напоминает дерево принятия решений с абсолютной свободой принятия решений в каждой точке ветвления. Однако уже на уровне химических диссипативных структур такая система хранит память о своем эволюционном пути. Если заставить систему двигаться вспять, то она проделает путь через последовательность тех же автопоэтических структур. Таким образом, принцип «порядок через флуктуацию», лежащий в основе всей когерентной эволюции, требует новой теории информации, основанной на дополнительности новации, и подтверждения в прагматической (т.е. эффективной) информации. Тот тип информации, который оказался столь полезным в технологии связи, сохраняется только за информацией, состоящей почти полностью из подтверждения. В области самоорганизующихся систем информация также обладает способностью к самоорганизации; возникает новое знание.

Наконец, в главе 4 «Моделирование самоорганизующйхся систем» дается обзор сравнительно успешных попыток применения теории диссипативных структур и принципа «порядок через флуктуацию» к явлениям самоорганизации во многих областях. Первые же из этих попыток привели к замечательным результатам в таких областях, как пребиотическая эволюция, функционирование биоорганизмов, нейрофизиология, экология (популяционная динамика) и социобиология. Совсем недавно были предприняты первые попытки моделирования явлений в системах человеческой жизнедеятельности, например в росте и эволюции городов. Те же принципы автопоэзиса и «порядок через флуктуацию» оказались ценными и при качественном описании эволюции таких интеллектуальных структур, как научные парадигмы, системы ценностей, мировоззрения и религии. Столь широкая применимость теории, которая первоначально была строго сформулирована в физической химии, не влечет за гобой физическую интерпретацию биологических и социокультурных явлений, а основана на фундаментальной гомологии (фундаментальном родстве) самоорганизующейся динамики на многих уровнях. Именно эта гомология позволяет рассматривать эволюцию как холистическое явление, осуществляющее динамическую связь многих уровней. Указанный подход детально разрабатывается во второй и третьей частях книги.

Часть вторая. Коэволюция: история реальности в нарушениях симметрии. На протяжении пяти глав, начиная с «Большого Взрыва», под несколько необычным углом зрения излагается история эволюции. Суть заключается в рассмотрении коэволюции макро- и микромира, сопоставлении условий одновременной дифференциации и комплексификации на микроскопической и макроскопической ветвях эволюции. В космической эволюции подобная точка зрения не нова. Никто не думает, будто структуры во Вселенной были построены односторонне, снизу вверх, от частиц и атомов до звезд, галактик и звездных скоплений. Но в области биологической эволюции на Земле обычно используется логика «построения более высоких форм жизни» в процессе микроэволюции при полном пренебрежении макроскопической ветвью эволюции. Системный подход, акцентирующий внимание на коэволюции обеих ветвей, приводит к существенно новым взглядам. Он позволяет провести различие между доминирующей в сфере человеческой жизни социокультурной эволюцией, а также социобиологической и экологической эволюциями, подчеркивая одновременно их взаимосвязанность.

В главе 5, носящей название «Космическая прелюдия», в общих чертах излагается по существу то, что принято называть космологической стандартной моделью, причем указывается, что границы между различными стадиями эволюции отмечены нарушениями симметрии. Первое из таких нарушений симметрии относится к четырем фундаментальным физическим взаимодействиям, а именно гравитационному, электромагнитному, сильному и слабому. С нарушением исходной симметрии пространство и время раскрываются для эволюции. Гравитационное взаимодействие осуществляется на макроскопических расстояниях, ядерные силы — на микроскопических расстояниях, электромагнитное взаимодействие — на промежуточных расстояниях. В плотной и горячей Вселенной первыми вступают в игру ядерные силы. После синтеза ядер водорода и гелия, а также охлаждения Вселенной космическая эволюция временно теряет свой импульс. Однако конфигурация микроскопических параметров сдвигается таким образом, что давление газа падает и вводит в игру гравитацию на макроскопической ветви эволюции. Именно гравитация в первую очередь отвечает за так называемую мезогранулярность Вселенной, которая включает в себя скопления скоплений галактик, скопления галактик, галактики, звездные скопления и, наконец, звезды. Особенно драматично проявляется коэволюция макро- и микрокосма в звездах. Гравитация создает условия для возникновения горячей и плотной окружающей среды, которая Снова вводит в игру ядерные силы, продолжающие синтез тяжелых ядер на микроэволюционной ветви. В свою очередь энергия, высвобождающаяся в этих процессах микроэволюции, определяет онтогенез звезд, их необратимую индивидуальную эволюцию. Еще одно нарушение симметрии в начавшейся фазе развития Вселенной отвечает за избыток вещества по сравнению с антивеществом примерно на 109 (одну миллиардную). Именно этим очень маленьким избытком объясняется образование материального мира — мира, состоящего из обычного вещества. В результате космической коэволюции вещество, находящееся на различных стадиях организации, распространяется по всему пространству и времени в своего рода неупорядоченной филогении. Наша планета Земля и мы сами состоим в значительной мере из вещества, происходящего не от нашего молодого Солнца (в котором все еще происходит превращение водорода в гелий), а от внешних слоев и остатков от взрывов уже не существующих далеких звезд. Солнце с помощью гравитации организовало это чуждое вещество, а происходящие в недрах Солнца ядерные процессы служат источником энергии для жизни на Земле.

Глава 6 «Биохимическая и биосферная коэволюция» посвящена изложению общей картины зарождения жизни на Земле. После возникновения органических молекул следующий этап, по-видимому, состоял в формировании способных участвовать в метаболизме диссипативных структур, которые могли сыграть решающую роль в формировании биополимеров и на следующих стадиях доклеточной эволюции. Возникновение способности к саморепродукции может быть объяснено в рамках модели гиперцикла, которая включает в себя принципы диссипативных структур, а также симбиоз на молекулярном уровне. На этой стадии начинает действовать биологическая микроэволюция с переносом информации вместо переноса вещества, что осуществляется посредством «планов» организации вещества. Благодаря «планам» стала возможна та высокая степень дифференциации, которая наглядно проявляется в жизни. Одноклеточная жизнь на Земле началась очень давно, возможно, еще до образования твердой земной коры около 4 млрд лет назад, Коэволюция микро- и макромира становится видимой уже на этой ранней стадии. Прокариоты, лишенные ядра одноклеточные — единственные носители жизни на начальной ее фазе — ответственны на протяжении 2 млрд лет за глубокую трансформацию сначала поверхности Земли под воздействием окисления, а затем и атмосферы под действием обогащения ее свободным кислородом. Трансформация макросистемы создала предпосылки для развития более сложных форм жизни на микроэволюционной ветви. В свою очередь это превратило био- и атмосферу в мировую саморегулирующуюся автопоэтическую систему, которая стабилизировалась за 1,5 млрд лет и обеспечила поддержание условий для сложных форм жизни на Земле. Так по крайней мере утверждает гипотеза, названная в честь древнегреческой богини Земли = Гея. Вплоть до наших дней Прокариоты действуют в рамках системы Гея в качестве крохотных автокаталитических единиц. Часть прокариотов объединились, образовав более сложные эукарио-тические клетки, или клетки с ядром. В качестве органелл внутри эукариотических клеток бывшие Прокариоты все еще сохраняют определенную автономию.

Глава 7 «Изобретения микроэволюции жизни» начинается с изложения этой все еще спорной эндосимбиотической теории происхождения эукариотических клеток. С эука-риотами возникло разделение полов, а значит, и возможность систематического генерирования максимального генетического разнообразия. За этим последовала гете-ротрофия, способность жить на других биоорганизмах или на веществе, которое те оставляют после своей гибели. Гетеротрофия привела к возникновению сложной многоуровневой экосистемы, которая способствовала образованию и взрывному распространению многоклеточных организмов. По-видимому, эти многоклеточные организмы также имеют эндосимбиотическое происхождение в социальных связях эукариотических клеток.