Russian
| English
"Куда идет мир? Каково будущее науки? Как "объять необъятное", получая образование - высшее, среднее, начальное? Как преодолеть "пропасть двух культур" - естественнонаучной и гуманитарной? Как создать и вырастить научную школу? Какова структура нашего познания? Как управлять риском? Можно ли с единой точки зрения взглянуть на проблемы математики и экономики, физики и психологии, компьютерных наук и географии, техники и философии?"

«Зелёные технологии» 
Олег Фиговский (Израиль) и Валерий Гумеров (Российская Федерация)

Неоспоримым преимуществом применения в сельском хозяйстве биопрепаратов перед химпрепаратами является их экологическая чистота. Продукты, произведённые по биотехнологиям не содержат в себе неестественные химические соединения. В них нет никаких избытков нитратов, фосфатов и прочих «спутников» химизации сельского хозяйства. Кроме того, чёткое соблюдение технологии применения сельхозбиопрепаратов ведёт к повышению урожайности многих сельскохозяйственных культур. Но самым весомым аргументов для потребителей биопрепаратов может оказаться в конечном итоге дешевизна их применения: в расчёте на гектар вложенных средств биотехнологии в несколько раз дешевле химических технологий. Немаловажным является и косвенный эффект применения биопрепаратов: естественная микрофлора и нормализованный химический состав овощей и фруктов увеличивают их лежкость, что приводит к уменьшению потерь при хранении. Не смотря на кажущийся антагонизм химических и биологических сельхозпрепаратов, среди биопрепаратов есть такие, которые можно и даже нужно использовать вместе с химическими удобрениями, потому что они улучшают процесс усвояемости растениями химических соединений, что приводит и к повышению урожайности, и к улучшению структуры почв, и к уменьшению нормы внесения химических удобрений.

Среди сельхозбиопрепаратов можно выделить:

– биоудобрения, вносятся в почву перед посевом растений и во время их подкормки, обеспечивают повышение урожая сельскохозяйственных культур;

— биостимуляторы роста, используются во время роста растений, завязи плодов и созревания урожая;

— средства борьбы с болезнями и вредителями, применяются при предпосевной обработке семян и в период появления вредителей;

— средства компостирования растительного материала, используются для переработки растительных материалов, остающихся после уборки урожая и используется для обогащения почвы перед посадкой растений.

По мнению многих экспертов, будущее принадлежит биологическому земледелию, принцип действия которого – поддержании почвы в жизнеспособном, биологически активном состоянии. Основа биологического земледелия – это активация микрофауны почвы. Почвенно-микробиологические процессы протекают с желаемой интенсивностью лишь тогда, когда их обитатели находятся в активном состоянии.

В корнеобитаемом слое почвы всегда существует сообщество бактерий, грибов, других простейших микроорганизмов, сложившихся за миллионы лет. Как это ни парадоксально, но основная масса биосферы состоит из этих микроскопических существ. В процессе своей жизнедеятельности они создали и постоянно увеличивают плодородие почв планеты. Среди микроорганизмов, населяющих почву, есть полезные и вредные. В свою очередь, среди полезных микроорганизмов одного и того же вида существуют особи высокой метаболической активности. Такие уникумы и представляют практический интерес. Их выделяют в чистую культуру, изучают полезные свойства, затем комбинируют, создавая консорциумы естественных экологически чистых препаратов. Получаются сельхозбиопрепараты.

Химические средства защиты растений подавляют не только вредную, но и полезную микрофлору почвы. В результате замедляются процессы разложения и минерализации растительных остатков. Вынос питательных элементов превышает естественный прирост. Почвы быстро теряют своё плодородие.

Для предотвращения дальнейшего оскудения почв разрабатываются сельхозбиопрепараты с уникальными свойствами. К примеру, унификаторы состава почвы и стабилизаторы урожая. Первые приводят состав почвы к стандартному набору микроорганизмов для унификации процесса дальнейшей работы с почвами независимо от климатических зон. Вторые стабилизируют урожай в зависимости от конкретных погодных условий в данный момент в данном регионе: в случае засухи удерживают влагу в почве и поглощают её из атмосферы, в случае дождей поглощают избыток влаги из почвы и непосредственно с сельскохозяйственных культур. Применение биопрепаратов при компостировании растительных остатков позволяет получить органическое экологически чистое удобрение. Безотходные технологии переработки отходов бродильной, маслобойной, сахарной, мукомольной промышленности с использованием биопрепаратов превращают отходы из загрязняющего фактора в высококачественное органическое удобрение или сырьё для получения биологических средств защиты растений.

Ещё одна «профессия» сельхозбиопрепаратов – рекультивация земель. Вокруг современных крупных предприятий простираются обширные поля отчуждённых нарушенных земель, утративших плодородие. Такие экзотические ландшафты напоминают лунные пейзажи. Это могут быть золошламоотвалы комбинатов, отвалы шахтной добычи рудных и нерудных ископаемых, нефтяные загрязнения различного происхождения. Традиционная рекультивация предлагает следующие приёмы ускоренного возврата нарушенных земель: нанесение плодородного слоя, использование хозбытотходов с последующим запахиванием, внесение торфяной золы.

Биологическая рекультивация нарушенных земель даёт возможность в момент высева трав-эндемиков обеспечить их семена необходимым и достаточным количеством питательных веществ, нужными группами почвенных микроорганизмов, усваивающих азот из воздуха и обеспечивающих их питание. Фактически при прорастании семян, вокруг корешка формируется свой микроагроценоз. Предварительное и последующее внесение почвоулучшающих и агрополезных микроорганизмов, а также объединение между собой множества микроагроценозов развивающихся растений, приводит к образованию сплошного тонкого слоя гумуса – основы начала формирования нормального плодоносного слоя.

В результате применения биопрепаратов уже в первый год рекультивации удаётся получить хороший рост трав. При этом резко возрастает численность почвенной микрофлоры, особенно тех групп микроорганизмов, которые активно участвуют в первичном почвообразовании. В результате гумус образуется уже на втором году рекультивации. На третий год его содержание достигает 1,3-1,5%. Без применения биологических методов содержание гумуса к этому времени составляет 0,1%. Затраты на рекультивацию с помощью микроорганизмов, входящих в состав сельхозбиопрепаратов, снижаются в 5-8 раз по сравнению с традиционными методами.

Сельхозбиопрепараты применяются не только сельхозпроизводителями, но и городскими коммунальными службы: для улучшения условий обитания человека в мегаполисе используются агроприёмы с применением биопрепаратов, обеспечивающие восстановление плодородия почвы и ее биологической активности. В результате улучшаются декоративные свойства растений, возрастает приживаемость саженцев (в 5-7 раз). Снижается расход минеральных удобрений в 2-3 раза, а в отдельных случаях можно полностью отказаться от их применения, кроме того, подавляется фитопатогенная микрофлора.

Завершая разговор про зелёные технологии в формате сельхозбиопрепаратов необходимо подчеркнуть, что стоимость сельхозбиопрепаратов на порядок выше, чем стоимость тех же химических удобрений, но расход на два порядка меньше. В результате – экономия для сельхозпроизводителей на порядок по сравнению с химическими сельхозпрепаратами. Плюс экологическая чистота сельхозпродуктов. Технология весьма и весьма перспективная, как в сельскохозяйственном аспекте, так и в коммерческом плане, и завоёвывает все новые и новые позиции в сельском хозяйстве развитых стран.

Помимо биопрепаратов на волне инновационных технологий в сельское хозяйство пришли нанотехнологии, что вполне обосновано можно отнести к расширению сферы влияния «зелёных технологий», поскольку при том снижается нагрузка на сельскохозяйственные экосистемы.

Так, в растениеводстве применение нанопрепаратов в качестве микроудобрений обеспечивает повышение устойчивости к неблагоприятным погодным условиям и увеличение урожайности (в среднем в 1,5-2 раза) почти всех продовольственных (картофель, зерновые, овощные, плодово-ягодные) и технических (хлопок, лен) культур. Эффект здесь достигается благодаря более активному проникновению микроэлементов в растение за счёт наноразмера частиц и их нейтрального (в электрохимическом смысле) статуса, что задействовала американская компания «Nanotech Industries, Inc.» (Калифорния), запатентовав технологию предпосевной нанообработки семян на основе биологически активных многофункциональных материалов, которые были названы наночипсами. Практически не повышая стоимость обработки, технология от «Nanotech Industries, Inc.» до 50 % увеличивает урожайность как продовольственных, так и технических культур. Наночипсы представляют собой твёрдый пористый носитель (минеральный материал, глина, торф, полимер), поры которого содержат наночастицы биологически активных веществ. Эти вещества, улучшающие условия прорастания, развития и защиты растений от неблагоприятных воздействий, не только проникают в поры, но и удерживаются на поверхности носителя за счёт адгезии. Состав биологически активных наночипсов выбирают с учётом ожидаемых и усреднённых неблагоприятных условий.

По мнению учёных, применение нанотехнологий в сельском хозяйстве (при выращивании зерна, овощей, растений и животных) и на пищевых производствах (при переработке и упаковке) приведёт к рождению совершенно нового класса пищевых продуктов – нанопродуктов, которые со временем вытеснят с рынка генно-модифицированные продукты.

Рассказ про достижения зелёных технологий не может обойтись без генной инженерии, которая открывает перед человечеством пути решения проблемы истощения ресурсов и настраивает на разумное природопользование.

В этом плане исследователи из израильского Института Вейцмана научились менять структуру ДНК овощей и фруктов для улучшения их внешнего вида и вкуса. Основные характеристики плодов при этом не меняются. Метод израильских учёных наиболее точный из всех существующих на сегодняшний день и представляет большой интерес для садоводов. До сих пор любые изменения структуры ДНК плодов приносили непредсказуемый результат, так как помимо вкусовых качеств и внешнего вида они случайно затрагивали и другие признаки растений.

Новый метод построен на принципе гомологичной рекомбинации – способа устранения двух- или однонитевых повреждений ДНК с помощью повторяющегося копирования признаков, который используется клетками чаще всего. Генетики научились использовать этот процесс в собственных целях. Они выбирают необходимую черту и «обрезают» ДНК таким образом, чтобы при естественном восстановлении клетки сами подставили её в молекулы.

Для показательного эксперимента учёные попытались изменить цвет томатов. Так результат исследования можно было без труда отследить визуально. В результате гомологичная рекомбинация произошла в 14% случаев, что считается высоким показателем точности.

«Теперь, когда мы показали, что преднамеренно индуцированная гомологичная рекомбинация происходит с такой высокой частотой, садоводы могут начать использовать этот механизм. Метод позволяет не просто редактировать, а переписывать геном растения, чтобы комбинировать необходимые свойства, включая вкус, размер, урожайность и устойчивость к болезням», – отметил профессор Авраам Леви, под руководством которого проходило исследование.

И немного про «голубую экономику». В последнее десятилетие динамично развивается мощное научно-практическое направление «The Blue Economy» («голубая экономика» или экономика морепродуктов). Этому направлению посвящены сотни публикаций и патентов, разработаны новые технологии, созданы сотни научно-производственных компаний в разных странах.

Одним из очень важных направлений «голубой экономики» является глубокая промышленная переработка водорослей из морских, речных, озёрных и искусственных водоёмов с целью получения широкого ассортимента ценных продуктов. Одними из самых массовых продуктов переработки водорослей являются волокна на основе альгината (альгинат – основное вещество водорослей, полисахарид близкий по химическому строению к целлюлозе). Однако, как оказалось в последние годы, из водорослей можно производить разные виды биотоплива и простейшие органические вещества как сырье для более сложных продуктов: масел, биологически активных веществ, лекарств. При этом не надо бурить скважины и забираться в отдалённые уголки планеты, крушить арктический шельф – достаточно водоема под водоросли и солнечного света для их питания и размножения.

Наиболее перспективной с точки зрения выращивания и производства различных полезных и ценных продуктов признается вид водорослей Spirulina. Эти водоросли легко выращиваются, дают большой урожай, содержат значительное количество потенциального полезного сырья. Самым прибыльным с учётом конъюнктуры на мировом рынке потребления топлива и реально реализуемым направлением признается выращивание водорослей для производства биотоплива и производство из водорослей различных видов биотоплива. При этом из одной тонны влажной биомассы водорослей можно получить до двухсот литров масла, из которого путём несложных технологий можно будет получать биодизель и ряд ценных органических веществ: триглицериды, жирные кислоты, липиды, углеводороды с длинной цепочкой, углеводы (сахара, крахмал, альгинат), этанол и другие спирты, целлюлозу, другие ценные продукты.

Эксперты отмечают высокую экономичность получения биотоплива из водорослей в сравнении с другими способами получения биотоплива из растений (рапс, кукуруза, пальмовые плоды и прочее) и предсказывают резкий рост использования водорослей в ближайшие годы. Специалисты оценивают преимущества биотоплива из водорослей по следующим соображениям:

— топливо потенциально продуцируется прямо в водорослях с помощью солнечной энергии;

— не нужно занимать площади, занятые под выращивание сельхозкультур;

— процесс производства легко масштабируется;

— цены готовой продукции сравнимы с ценами на обычное топливо;

— экологическая чистота производства.

В общем, в мире сформировалось мощное перспективное научно-техническое движение – «голубая революция» – эффективное использование растений и животных морей, рек и озёр в различных важнейших направлениях деятельности человека: от изучения механизма функционирования растений и животных водоёмов различного вида до создания новых технологий и продуктов на этой основе (бионика) и «одомашнивание» выращивания водных растений – водорослей для производства из них биотоплива, волокон, углеводов, полисахаридов, продуктов питания, пищевых добавок, лекарств, других ценных продуктов. При этом «голубые технологии» экономичны (солнечная энергия прямо трансформируется в биотопливо и другие ценные продукты) и экологичны (не занимают земельные угодья, не увеличивают содержание углекислого газа в атмосфере).

В конце нашего небольшого обзора достижений зелёных технологий немного экзотики. Зелёные технологии – зеленее не придумаешь.

В попытке найти экологическую альтернативу для создания электрических батарей исследователи из Калифорнийского университета в Риверсайде разработали батарею с использованием шампиньонов двуспоровых. Как утверждают учёные, их детище сможет не просто снизить экономическую и экологическую стоимость при производстве батарей, но и привести к созданию аккумуляторов, мощность которых не падает, а наоборот, возрастает с течением времени. Инновационные батареи состоят из трёх основных элементов: отрицательный полюс (катод), положительный полюс (анод) и твёрдый или жидкий разделитель (электролит). В качестве анода в литиево-ионных батареях используется синтетический графит, однако этот материал требует использования агрессивных химических веществ для очистки и подготовки. Эти процессы не просто дороги сами по себе. Их побочным продуктом являются опасные отходы, вредящие окружающей среде. Учёные решили использовать грибы шампиньоны как заменитель для графита по двум причинам. Во-первых, более ранние исследования показали, что эти грибы – очень пористые, а это свойство важно при создании аккумулятора (большее количество отверстий позволяет запасать и передавать больше энергии, что повышает производительность). Во-вторых, они содержат много солей калия, а значит, могут привести к созданию батарей, активных в течение долгого времени, по сути, даже повышающих собственную мощность со временем. Учёные обнаружили, что, кожица со шляпки двуспоровых шампиньонов при нагреве до 500 градусов Цельсия превращается в структуру из естественных углеродных нанолент. После нагрева до 1100 градусов она превращается в пористую сеть углеродных нанолент (материал с большой площадью поверхности, пригодный для хранения большего количества энергии). Исследователи говорят, что, если дальше оптимизировать процесс, углеродные аноды, полученные из грибов, могут стать достойной альтернативой обычным графитовым анодам. «С подобными материалами аккумуляторы мобильных телефонов будущего будут не разряжаться быстрее со временем, а напротив, начнут дольше держать заряд из-за активизации пор внутри углеродных структур», – комментирует Бреннан Кэмпбелл, аспирант Калифорнийского университета в Риверсайде и один из соавторов работы.

Люк Боузер, работающий в университете британского города Лидса, вместе с коллегами задумался над тем, можно ли использовать белки, создаваемые для укрепления скелетов животных, при выращивании новых деталей электроники. Его команда в качестве основы для своей работы выбрала силикатеины – белки, строящие скелеты морских губок. Используя методы размножения ДНК, учёные вырастили миллионы мутаций ДНК, кодирующих силикатеины. Мутации возникали естественным путём во время процесса роста, так что в итоге получилось множество вариантов белков. А это привело к тому, что некоторые силикатеины приобрели способность строить разнообразные минеральные кристаллические структуры. Затем исследователи прикрепили ДНК к миниатюрным полистирольным шарикам и поместили их в раствор с кремнийсодержащим соединением. Группа Боузера стремилась отобрать белки, способные брать из раствора кремний и строить вокруг шариков кремниевые структуры, одновременно обеспечивая доступ к ДНК на поверхности шарика, ибо им легче было собирать и размножать те ДНК, которые создавали самые многообещающие кристаллы диоксида кремния. И каков конечный продукт? – Белки, создающие кремниевые структуры, каких не знает природа. При дальнейшем развитии технологий можно добиться того, чтобы выращивать кристаллические структуры кремния нужного размера и формы для применения в технике.

Исследователи из Университета Техаса в Остине создали новый экологически чистый антипирен из вещества, которое содержится в морских мидиях. Существующие антипирены часто являются токсичными и могут накапливаться в течение долгого времени в окружающей среде и живых организмах, включая человека. Огнезащитные добавки включаются в состав современной мебели, автомобильной обивки и многих других потребительских товаров. С течением времени эти химикаты могут выделять токсичные вещества в окружающую среду и оказывать вредное воздействие на здоровье людей. Исследователи обнаружили, что синтетическое покрытие из полидопамина, полученного из допамина, обладает весьма эффективными огнезащитными свойствами. Исследователи считают, что их покрытие можно использовать вместо обычных антипиренов. «Поскольку полидопамин является природным и уже присутствует в животных, то вопрос о токсичности сразу уходит, – сказал руководитель исследования Кристофер Эллисон. – Мы считаем, что полидопамин может легко заменить антипирены, используемые во многих продуктах, что сделает их более безопасными для детей и взрослых». Покрытие из полидопамина наносили на внутреннюю и наружную поверхности пенополиуретана путём простого погружения в водный раствор допамина в течение нескольких дней. Было обнаружено, что применение покрытия из полидопамина для пенопластов привело к значительному снижению интенсивности пламени. Возможность огнезащитных покрытий из полидопамина по уменьшению интенсивности пожара на 20% лучше, чем у существующих антипиренов, при этом необходимо относительно малое количество полиподамина для защиты горючих материалов от огня.

Учёные из Кардиффского университета (Великобритания) придумали инновационный способ добычи водорода из обычной овсяницы, что может сильно повлиять на сферу энергетики в целом. Водород уже давно признан чрезвычайно перспективным альтернативным видом топлива: обладая высоким содержанием энергии, он не выделяет парниковых газов при сгорании. Однако процесс получения этого топлива сам по себе не является экологически чистым, к тому же он дорогостоящий, так как при этом расходуются огромные запасы природного газа и угля. Данные факты заставляют учёных придумывать альтернативные и более безопасные способы получения водорода. Одно из самых перспективных исследований ведётся учёными из Кардиффского университета в Великобритании, которые сотрудничают с исследователями из Королевского университета в Белфасте. В ходе своего исследования учёные разрабатывают эффективный способ получения водорода из целлюлозы с помощью солнечного света и катализатора. В экспериментах были использованы три металлических катализатора на основе палладия, золота и никеля – последний представляет для исследователей наибольший интерес из-за его распространённости в природе и ценовой доступности. Команда смешала три катализатора с целлюлозой в специальной колбе и поместила систему под настольную лампу, при этом состав смеси измерялся каждые 30 минут. После этого эксперимент повторили с использованием обычной травы. В результате исследователям удалось убедиться, что данный процесс действительно позволяет получать значительное количество водорода. По словам исследователей, использование дешёвого катализатора в виде никеля и обычной травы для получения водорода делает из их исследования по-настоящему инновационными.

Химики из университета Бата синтезировали биопластик, используя вещество, которое содержится в смоле хвойных деревьев. Исследователи надеются, что материал, полученный целиком из возобновляемых ресурсов, будет использоваться как упаковка для пищевых продуктов, а также для создания медицинских имплантатов. Сырьём для производства экологичных материалов, таких как полилактид (полимолочная кислота), служат возобновляемые ресурсы: кукуруза и сахарный тростник. Помимо этого достоинства, полилактиды также обладают хорошей биосовместимостью, что позволяет использовать их в качестве медицинских имплантатов. Однако одним из существенных недостатков полимеров молочной кислоты является их низкая прочность и эластичность. Чтобы сделать полилактид более гибким, к нему добавляют капролактон, получаемый из нефти. Такая добавка делает биопластик не полностью возобновляемым материалом. Теперь химики из Англии заменили капролактон на пинен – вещество циклического строения, относящееся к классу терпенов, которое получают из смолы хвойных деревьев. Именно пинен придаёт ели её характерный аромат. Их работа поможет производить биопластмассу полностью из возобновляемых ресурсов. Пока учёные получили всего несколько граммов экологичного материала, однако химики работают над созданием методики, которая позволит перенести синтез биопластика из лаборатории в масштабное производство.

Исследователи из Германии предложили очень перспективный метод для создания пены из древесных частиц. Полученную вспененную древесину можно использовать точно так же, как и обычные пенопласты, но они представляют собой полностью натуральный продукт из устойчивого сырья. Другим преимущество является то, что в отличие от обычных вспененных продуктов, вспененная древесина может быть с лёгкостью переработана после использования. Например, если брать её в качестве упаковочного материала, то после использования она просто перерабатывается как макулатура. Новый материал имеет настолько большой потенциал, что выиграл премию GreenTec Awards 2015 в категории «Строительство и жизнь». Для производства такой пены сначала очень мелко измельчают древесину, пока крошечные частицы дерева не превратятся в вязкую массу. Затем они добавляют к этой суспензии газ, чтобы вспенить её, и дают затвердеть. Процессу отверждения способствуют природные вещества, содержащиеся в самой древесине. Полученное вспененное дерево представляет собой лёгкий материал, из которого могут быть сформированы жёсткие пластины или гибкие листы. Как и другие продукты на основе древесины, они могут быть легко распилены или разрезаны для получения желаемых размеров. Древесная пена является идеальным материалом для теплоизоляции дома, где необходимо сохранить тепло внутри и создать уютную обстановку для обитателей здания. Некоторые альтернативные древесные теплоизоляционные материалы, такие как древесно-волокнистые плиты, менее устойчивы к деформации, чем пенопласт, поскольку имеют тенденцию постепенно разрушаться под действием собственного веса из-за накопления влаги, особенно в середине. А вспененное дерево в этом отношении ведёт себя как и обычные пенопласты. Учёные проанализировали свою разработку в соответствии с действующими стандартами для изоляционных материалов и получили весьма обнадёживающие результаты, причём не только с точки зрения их теплоизоляционных свойств, но и механических, и гидродинамических свойств. Другими словами, вспененная древесина изолирует тепло, также как обычные пенопласты, но устойчиво к давлению и влажности.

В США доктор Малькольм Браун, профессор из Университета Техаса, представил революционный способ «выращивания» наноцеллюлозы, который, по его мнению, является одним из самых важных открытий в биологии растений. Наноцеллюлоза – материал, представляющий собой набор наноразмерных волокон целлюлозы с высоким отношением длины к диаметру. Типичный диаметр такого волокна 5-20 нм, а длина варьируется от 10 нм до нескольких микрон. Материал обладает свойством псевдопластичности, т.е. является вязким при обычных условиях и ведёт себя как жидкость при физическом воздействии (тряске, взбалтывании и т. п.). Удивительные свойства наноцеллюлозы позволяют создавать на её основе сверхлёгкие и сверхпрочные материалы, такие, например, как аэрогель. Предметом исследования доктора Брауна были чайный гриб (симбиоз дрожжевых грибков и уксусно-кислых бактерий) и его бактерии, которые способны производить наноцеллюлозу в культурной среде. Но для производства таким способом в промышленных масштабах потребовалось бы большое количество сахара, питательных веществ и огромные бродильные чаны. Метод же профессора Брауна гораздо более эффективен и экологически чист. Единственное, что для него нужно – это вода, солнечный свет и водоросли. Учёный «внедрил» выделенные из ацетобактерий гены в сине-зелёные водоросли, заставив их производить наноцеллюлозу. Потенциально, такой способ позволит создавать целые органические заводы по производству материала в промышленных масштабах. Появятся фермы, производящие наноцеллюлозу в больших количествах и недорого, да ещё и с поглощением углекислого газа из атмосферы. Тогда наноцеллюлоза может стать сырьём для производства биотоплива, и станут экономически эффективны многие области её применения.

Группа биохимиков под руководством Джеймса Ляо из университета штата Калифорния в Лос-Анжелесе создала особый штамм бактерий из рода Ralstonia, которые поглощают углекислый газ и перерабатывают его в бутанол и другие простые спирты, которые можно использовать в качестве биотоплива. Эта бацилла относится к особому классу бактерий, которые могут питаться водородом и не нуждаются в кислороде или в других особых условиях среды для выживания. Ферменты из семейства гидрогеназ – окислителей водорода – являются ключевым элементом микроба для его выживания. Джеймс Ляо и его коллеги вставили в геном Ralstonia eutropha несколько генов, заставляющих ее превращать излишки энергии в бутанол и другие органические спирты. Осталось найти надёжный и безопасный источник водорода – использование чистого водорода было бы крайне опасным занятием, так как любая утечка может обернуться мощнейшим взрывом. Учёные воспользовались тем, что бактерия умеет использовать молекулы муравьиной кислоты в качестве источника водорода. Ralstonia eutropha поглощает молекулы кислоты, расщепляет её на молекулу водорода и углекислого газа и использует первую как «топливо», а вторую – в качестве «стройматериалов» клетки. При этом муравьиную кислоту достаточно легко получить, если одновременно пропускать через воду углекислый газ и электрический ток. Биохимики проверили работу бактериальной «мануфактуры», поместив колонию бактерий в сосуд, через который пропускался электрический ток и углекислый газ. К разочарованию учёных, ток блокировал рост колонии, так как в жидкости постоянно появлялись токсичные для микробов пероксид водорода, оксид азота и атомарный кислород. Исследователи решили эту проблему, обернув анод тонким слоем пористой керамики. Керамическая «чаша» действовала как частично проницаемая мембрана, пропускающая молекулы муравьиной кислоты и препятствующая «побегу» токсичных соединений. По оценке руководителя проекта, такая конструкция позволяет колонии расти, вырабатывает приемлемое количество биотоплива и может применяться для получения биотоплива из электричества, вырабатываемого солнечными батареями, ветряками и другими возобновляемыми источниками энергии.

С чего начинается изготовление любой деревянной мебели? Обычно дерево срубают, а уж потом думают, что из него сделать: табуретку, детский стульчик, кухонный стол или шкаф. Традиционный подход к этому вопросу буквально перевернул с точностью до наоборот мебельных дел мастер из Великобритании Гэвин Манро. Его мебель сначала растёт, как задумано мастером в виде стола, лампы или кресла, а после того, как она достигнет нужных размеров, её срубают. Фантастика? Вовсе нет! Идея «живой мебели» пришла к Манро, когда он наблюдал за маминым деревцем бонсай, а став взрослым Гэвин создал целую компанию по выращиванию мебели – Full Grown. За последние несколько лет они «вырастили» более 300 «живых» ивовых стульев, буквально «уговаривая» их расти так, как задумал дизайнер. Вся «выращенная» Манро мебель монолитна, она не требует «распила на детали», склеивания или сколачивания гвоздями. Сначала высаживают ивовые деревья, обильно поливаемые в процессе роста, при этом молодой саженец ивы всего за несколько недель принимает заданную форму будущей мебели и направление её роста. Следующий этап более долгий, он занимает 2-3 года, пока дерево не укрепится и до 6 лет, пока форма не станет устойчивой. Конечно, чтобы получить эксклюзивный ивовый или дубовый стул, возможно, придётся ждать несколько лет, но, во-первых, поля компании уже полны как новых заготовок, так и практически готовых к выходу в свет изделий, а во-вторых, тем они и ценнее, что должны быть выдержаны, как хороший коньяк. В 2008 году под производство Гэвин Манро отвел участок площадью 1 гектар в английском городке Уирксворд. Сейчас там растёт примерно 400 стульев, столов и абажуров. Технология выращивания мебели поистине удивительна! Ведь значительную часть работы выполняет природа, мастер лишь корректирует и доводит до блеска каждое изделие. Команда мебельщиков-садоводов занимается выращиванием деревьев вокруг рам и каркасов, превращающихся в стулья, столики, торшеры, светильники, люстры и рамы для зеркал. Проект был запущен ещё 10 лет назад и этой осенью будет собран первый значительный урожай зеркал, люстр, светильников, а в 2016 году Манро планирует собрать новый «урожай» из полусотни новых столов и стульев. Пока среди сырья для его новаторской мебели лидирует ива, но уже ведутся эксперименты по созданию живой мебели из орешника, ясеня, клёна, платана, дикой яблони, красного и скального дуба. Да и модельный ряд вскоре может значительно вырасти, Гэвин Манро планирует вырастить комоды и книжные полки. Что касается стоимости такой мебели, то она «кусается» – примерно 2500 фунтов стерлингов, а светильники и рамы около1500 фунтов за экземпляр.

К чему последняя ненаучная экзотика на грани делового помешательства? – Во-первых, как пример нетривиального подхода к решению тривиальной задачи. Во-вторых, как образец приложения наблюдений за окружающим миром к производственному процессу. Мозг учёного так заточен, что замечает то, мимо чего обыватели проходят, головы совсем не оборачивая: оно уже есть среди окружающего мира, остаётся только всем остальным показать. Голова инженера, так повёрнута, что примечает то, что можно к делу приложить, мозги особо не напрягая: оно уже изобретено природой или другими, остаётся только вставить в своё изделие или технологию.

В любом деле, в любой информации можно найти рациональные зерна, коли с головой к тому делу или информации подойти. Мозг учёного так устроен, что он во всем ищет ответы на свои вопросы, если тот всерьёз голову над какой-то проблемой ломает. Даже во сне. Даже при чтении ерунды всякой, когда заряд творца на решение вдруг так высветит проблему, что она совершенно в ином свете предстанет, а выход из тупика рядом окажется. Только немного сбоку. Не в том направлении, куда научная рутина затянула. Научные изыскания часто идут параллельными путями. Над одной и той же проблемой бьются пытливые умы сразу в нескольких институтах и лабораториях. Особенно если проблема востребована обществом. Бьются, не ведая о проведении аналогичных работ. Не потому что знать ничего не хотят о том, что в мире творится, а потому что некогда. Нет времени по той же паутине лазить. А в ней много чего найти можно. В том числе и информацию о других работах, которую в своей работе задействовать можно. И как информацию к размышлению, и как вести о коллегах, и как аргументацию в отстаивании своего проекта перед руководством – раз другие по этой тематике работают, значит, тема востребована и надо активизировать свои исследования в этом направлении, чтобы на обочине не оказаться. Для того и представлена вышеприведённая информация, представляющая собой подборку вестей с полей интернета по тематике данной главы. И задача обзора – не столько просвещать, сколько мозги включать. Не в плане, что надо, а что не надо исследовать, а в расчёте на использование в чьей-то работе для более быстрого выхода на конечную цель, без отвлечения на решение уже решённых задач.

Подытоживая все сказанное в этой главе, стоит ещё раз повторить, что одним из важнейших направлений современного развития научно-технического прогресса является смена парадигмы: от экстенсивного к устойчивому развитию с акцентом на максимальное сохранение природы и её самого активного члена – человека, деструктивная активность которого по отношению к природе достигла критического уровня. Антропогенный фактор в нарушении экобаланса со всеми вытекающими из этого негативными последствиями стал доминирующим. В связи с этим в развитых странах общество и правительства ставят задачу и принимают программы национального и интернационального характера по защите окружающей среды. Пришла пора спасать планету от неразумной избыточной эксплуатации её ресурсов человеком. В ответ на этот вызов времени в конце XX века сформировалось и продолжает развиваться в настоящий момент новое направление науки и практики под названием «зелёные технологии», охватывающее практически все сферы деятельности человека.

В перспективе ожидается дальнейшее ускоренное развитие широкого спектра экологически чистых технологий. К наиболее острым глобальным экологическим проблемам сегодня относят изменение климата, доступ к качественной воде и другим ресурсам, утрату биоразнообразия, поэтому можно предположить, что развитие технологий будет направлено на их решение. При этом «зелёные технологии» не сводятся к частным случаям. «Зеленые технологии» – это и экологически безопасное сырье, и экологически безопасные конечные продукты, и экологически безопасные технологии производства.