Russian
| English
"Куда идет мир? Каково будущее науки? Как "объять необъятное", получая образование - высшее, среднее, начальное? Как преодолеть "пропасть двух культур" - естественнонаучной и гуманитарной? Как создать и вырастить научную школу? Какова структура нашего познания? Как управлять риском? Можно ли с единой точки зрения взглянуть на проблемы математики и экономики, физики и психологии, компьютерных наук и географии, техники и философии?"

«Нанокорпускулярный мутагенез: новое направление в генетической науке» 
С.Т. Захидов

Ускоренное развитие нанотехнологий в ближайшее время может оформить третий этап в экспериментальных исследованиях наследственной мутационной изменчивости. Этот этап будет связан с появлением нового специального направления в генетической науке, а именно – нанокорпускулярного мутагенеза, под которым следует понимать процесс возникновения наследственных перемен под влиянием наночастиц и/или наноструктурированных материалов [1,2].

По значению, интенсивности действия, разнообразию и широте спектра вызываемых мутаций нанокорпускулярный мутагенез, наверное, не будет уступать химическому и радиационному мутагенезам, с помощью которых вот уже на протяжении многих десятков лет успешно решаются многие проблемы современной генетики и селекции. Объем материала по генетическим эффектам химических мутагенов, высокоэнергетических квантов и элементарных частиц огромен. Этот материал с большой очевидностью свидетельствует о том, что методология искусственного экспериментального мутагенеза является мощным средством воздействия на живые системы, и что во многих случаях использование этой методологии может приводить к положительным результатам. Надо заметить, что очень часто в работах по мутагенезу предпочтение отдается химическим соединениям, наделенным мутагенным комплексом. Согласно опытам выдающегося советского генетика-биолога, основоположника химического мутагенеза, Героя Социалистического труда, лауреата Ленинской премии, член-корреспондента АН СССР И.А.Рапопорта [3], химические мутагены (и супермутагены) могут повышать частоту мутаций на 2-3 порядка у растений и на 4-5 порядков у микроорганизмов по сравнению с уровнем спонтанного мутагенеза, а также  радикально воздействовать на опухоли. С их помощью можно изменять ход метаболических и генетических процессов, и тем самым ускорять формообразовательные и селекционные процессы, мобилизовать скрытые генетические ресурсы. С другой стороны, хорошо известно, что многие химические мутагены несут с собой энтропию, поэтому они не только созидают, но и разрушают, вызывают вредные мутации и злокачественные новообразования, обнаруживают повышенную токсичность.   И ещё одна из неразрешенных до сих пор проблем экспериментального мутагенеза состоит в том, что трудно предсказать в силу случайности мутационного процесса (события), в каком конкретно гене произойдет очередная мутация, и будет ли она положительной, адаптивной или отрицательной, губительной.

Очень может быть, что создаваемые на основе манипуляций с отдельными атомами или молекулами генетически активные соединения, так называемые нанохемомутагены, будут иметь низкие величины энтропии и максимально упорядоченные конфигурации, будут действовать, как говорится, более мягко, «без агрессивности», и обнаружат такие свойства, которые ранее не были известны для радиационных и химических мутагенов. В идеале можно ожидать, что  нанохемомутагены будут легко, без больших энергетических затрат преодолевать поверхностные и внутриклеточные барьеры, и, сводя к минимуму общую токсичность, прицельно поражать конструкцию вредных, смертоносных генов – с одной стороны, и актуализировать созидательные потенциалы немых генов и псевдогенов (так называемых генов-«пенсионеров») – с другой. Актуализация потенциальной энергии немых генов и псевдогенов позволила бы преодолеть некоторые эволюционные запреты, заглянуть в палеонтологическое прошлое.

Наномутагены могут стать важным инструментом для открытия совершенно новых механизмов, лежащих в основе перемен в структуре генетического материала,  способствовать установлению новых генетических закономерностей и, как следствие, развитию общей теории мутагенеза, а также решению ряда специальных и общебиологических задач, в том числе экономически важных. Применение наномутагенов в практике мутационной селекции откроет новые генетические резервы и дополнительные возможности для создания новых уникальных и ценных сортов культурных растений, более гибких, жизнестойких и продуктивных.

Вместе с тем, широкое внедрение продуктов нанотехнологий в реальную практику – промышленное производство, биотехнологии и медицину – непременно поставит перед современной мутационной генетикой дополнительную задачу, а именно – изучение механизма генетического действия наночастиц, оценку генетических рисков искусственно создаваемых нановеществ, и в первую очередь лекарственных препаратов и средств их доставки. Пока же мы не знаем, какую степень сродства проявят вновь создаваемые органические и неорганические наночастицы с генами и хромосомами, и как они будут действовать на такие ключевые генетические процессы, как репликация, транскрипция, репарация.

Правда, в литературе уже можно найти данные, указывающие на способность некоторых разновидностей наночастиц возмущать молекулу ДНК, нарушать ее пространственную упаковку [4-6], вызывать поломки хромосом и точечные генные мутации [7-11], а также наследуемые в поколениях морфологические аномалии [12]. Так, в 2012 году итальянскими учеными Веччио и др. [12] в опытах на дрозофиле были получены первые в мире наномутанты: у потомства фруктовых мушек, обработанных наночастицами золота, были выявлены  разнообразные изменения в структуре глаз, крыльев и груди. В свое время И.А.Рапопорт [13] постулировал, что нет ни одного случая, когда бы найденный в химическом опыте с дрозофилой мутаген не был бы активен для очень многих организмов. Действительно, наши первые разведывательные опыты, выполненные на мышах, впервые показали, что, например, ультрамалые наночастицы золота, в зависимости от выбранных условий эксперимента, могут выступать в трех ипостасях: как мутаген, антимутаген и комутаген [14]. В то же время на модели мышей линии 129, дефектных по гену ДНК-полимеразы йота, практически во всех вариантах мутагенного эксперимента наночастицы золота вызывали слабое статистически недостоверное увеличение частоты встречаемости генетически аномальных половых клеток у этих животных [15]. В литературе есть также данные, которые говорят о том, что, например, фуллерены могут пролезать в молекулу ДНК, искривлять и даже «расплетать» ее.

Все эти, пока еще немногочисленные факты, должны учитываться специалистами, занимающимися разработками в области нанотехнологий.

В целом же решение проблемы генетической безопасности материалов, создаваемых на базе методов нанотехнологического синтеза, скорее всего, потребует многолетних и трудоемких исследований. В современных условиях только так можно будет поставить барьер для попадания генетически опасных нановеществ в окружающую природную среду. С другой стороны, результаты исследований структурно-функциональных последствий действия наночастиц  на гены, хромосомы, белки, ферменты и органеллы в клетке, а также интерпретация и теоретический анализ этих результатов откроют новую страницу в биологии и генетике, станут самостоятельным тематическим разделом в нанонауке и синергетике, разделом очень важным и интересным.

И последнее. По аналогии с радио — и химиомутациями все основные мутации (генные, хромосомные и геномные), индуцированные нанопродуктами,  предлагаю называть наномутациями.

Addendum

Парадоксально, но нельзя исключить, что наночастицы, приготовленные из благородных металлов, попадая в поле действия молекулы ДНК, генов или хромосом сами могут стать объектом перепрограммирования — изменения всего спектра их химико-физических свойств, перенормировки энергетических характеристик, в частности, константы энтропии. Взаимодействие нанокорпускул с генетическими матрицами можно рассматривать как своеобразный обмен информации, как специфический рекомбинационный процесс.

ЛИТЕРАТУРА

1. Захидов С.Т. Выступление на заседании Президиума РАН 13 октября 2013 г. в рамках обсуждения научного сообщения Ю.М.Евдокимова « Структурная нанотехнология нуклеиновых кислот: создание «жидких и «твердых» наноконструкций ДНК» // Стеногр. Отчет,  Вест. РАН, 2014, т. 84, С. 20-33.

2. Захидов С.Т. Нанокорпускулярный мутагенез – новое направление в генетической науке //  Материалы II Международной научной конференции «Генетика и биотехнология XXI века: проблемы, достижения, перспективы»,  Минск, 2015. С. 30.

3. Рапопорт И.А. Химический мутагенез: теория и практика // М.: Знание (репр. изд.). 2013. 86С. [J.A.Rapoport. Chemical mutagenesis: Moscow.  Znanie Publishers. Reprint. 1966. 86P.].

4. Евдокимов Ю.М. Наночастицы золота «управляют» упаковкой ДНК // Природа. 2015. №4. С.13-21. [Yevdokimov Yu.M. Gold nanoparticles govern DNA packaging. Priroda (Moscow, Russ. Fed.). 2015. No. 4. PP.13–21].

5. Скуридин С.Г., Дубинская В.А., Штыкова Э.В. и др.  Фиксация наночастиц золота в структуре квазинематических слоев, образованных молекулами ДНК // Биологические мембраны, 2011. Т. 28. С. 191–198. [Skuridin S.G., Dubinskaya V.A., Shtykova E.V., et al. Retention of Gold Nanoparticles in the Structure of Quasinematic Layers Formed by DNA Molecules. Biochemistry, Supplemental Series A. 2011. V. 5. PP. 191-197].

6. Yevdokimov Y.M., Skuridin S. G., Salyanov V. I., et al. A Dual Effect of Au-Nanoparticles on Nucleic Acid Cholesteric Liquid-Crystalline Particles // Journal of Biomaterials and Nanobiotechnology. 2011. V. 2. P. 461-471.

7. Aydın A., Sipahi H. and Charehsaz M. Nanoparticles toxicity and their routes of exposures // Recent Advances in Novel Drug Carrier Systems (edited by Ali Demir Sezer), Publisher: InTech. 2012. P. 483-500.

8. Di Bucchianico S., Fabbriz M. R., Cirillo S., et al. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold  nanoparticles // International Journal of Nanomedicine.  2014. V.9. P. 2191–2204.

9. Doak S. H., Liu Y., Chen C. Genotoxicity and Cancer // Adverse Effects of Engineered Nanomaterials. Elsevier Inc.  2012. P. 243-261.

10. Ng C-T., Li J.J., Bay B-H., Yung L-Y.L. Current  studies into the genotoxic effects of nanomaterials // Journal of Nucleic Acids. 2010, Article ID 947859, 12 page shttp: //dx.doi.org/10.4061/2010/947859.

11. Yao Y., Costa M. Genetic and epigenetic effects of nanoparticles // J. Mol. Genet. Med.  2013. V.7. P. 1-6.

12. Vecchio G., Galeone A.,  Brunetti V. et al., Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster // Nanomedicine: Nanotechnology, Biology, and Medicine. 2012. V.8, P. 1–7.

13. Рапопорт И.А. Микрогенетика. М.: Наука  (Репр. изд.). 2010. 530 С.  [J.A. Rapoport. Microgenetics. Reprint. Moscow. 2010. 534P.].

14. Захидов С.Т., Муджири Н.М., Рудой В.М. и др.  Наночастицы  золота: мутаген, антимутаген, комутаген? // Изв. РАН. Сер. биол., 2017, № 3, с. 213–217.

15. Муджири Н. М.,  Захидов С. Т., Рудой В. М., Дементьева О. В., Макаров А. А., Макарова И. В., Зеленина И. А., Андреева Л. Е., Маршак Т. Л.  Цитогенетическая активность наночастиц золота в половых и соматических клетках мышей линии 129 с нонсенс-мутацией в гене ДНК-полимеразы йота // Изв. РАН. сер. биол.,  2018, № 2,  с.  137–143. 

Сведения об авторе:

Захидов Сабир Тишаевич, ведущий научный сотрудник лаборатории клеточной биологии старения и развития биологического факультета МГУ им. М.В.Ломоносова, профессор, доктор  биологических  наук.  Область научных интересов — биология развития, теоретический  и  экспериментальный  мутагенез, генетика старения, репродуктивная и генетическая нанотоксикология.