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Abstract

The results of study of an analog neural network
model with time delay which produces chaos similar
to the human and animal EEGs are presented. It is
shown that the increasing of the neural network asym-
metry (increasing of the neurons’ excitability) leads to
the phenomenon which is similar to the epilepsy. We
also consider ‘anticontrol’ of chaos: the action of the
external low-dimensional chaotic force on the neural
network with developed epilepsy-like pathological ac-
tivity. We obtained suppression of pathological non-
chaotic activity at the optimal amplitude of external
low-dimansional chaotic force. In this case, chaotic
neural network demonstrates phenomenon which is
stmilar to stochastic resonance for internal sponta-
neous oscillations under the action of external low-
dimensional chaotic force instead of random noise, as
it was studied previously.

1. Introduction

Artificial chaotic neural networks attract particu-
lar attention due to thier possible using for control
purposes, signal and information processing, mem-
ory development, and for understanding of the self-
organization processes in the neuron ensembles in the
brain.

At present, there are two main hypotheses about the
nature of chaos in the brain: low-dimensional chaos
and filtered noise. Non-stationary versions of these hy-
potheses are also discussed.

In early investigations [1-6] it was reported that
the human and animal EEGs were produced by low-
dimensional chaotic systems. Using Grassberger—
Procaccia algorithm, 1t was shown that the value of the
correlation dimension v was varied from 6-9 in awak-
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ing state to 4-5 during sleep or to 2-4 at the epilepsy
[2,3,5,6]. The largest Lyapunov exponent value of EEG
time series was in the range from 0.028 s=! t0 2.9 s~
[1,3,4].

However, more recent investigations [7], using novel
method of surrogate data [8], have shown that the
evidence for low-dimensional chaotic behaviour is no
longer convincing. It was demonstrated that the ar-
tificial signal with identical to EEG power spectrum,
obtained from the original time series by random mix-
ing of the phases, can mimic low-dimensional chaotic
attractors with close values of the correlation dimen-
sion [7,8].

Nevertheless, the method of surrogate data was also
carefully tested for the Lorentz map and the Hénon
map, white Gaussian noises, colored Gaussian noises
and mixture of sine waves along with experimental
EEG data (alpha-, beta-, delta- and theta-thythms) in
[9]. It is concluded that EEG time series produce finite
correlation dimensions. The surrogate testing of eight
independent realizations of different forms of EEG ac-
tivities demonstrates significantly different correlation
dimension values than the original data sets (Student’s
t test) [9].

Establishment of the deterministic origin of the EEG
allows to make modelling for the system which pro-
duces this signal. Relatively small number of de-
grees of freedom in EEG points to the high degree of
self-organization of the neural electrical activity which
changes in dependence on the functional state of the
brain (see, for example, [10]). Under such degree of
self-organization, it is naturally to suppose that the
properties of EEG are essentially determined by the
collective degrees of freedom of the neuron outputs.
And one can use very simple analog Hopfield neural
network model to describe EEG, in which one neuron
represents an averaged activity of neural sub-ensemble
of the brain.

Early studies of chaotic neural network models are



mainly devoted to the existence of chaos both in
the single neuron output and in the neural ensem-
ble [11,12]. In subsequent investigations, quantitative
characteristics of the chaotic behaviour both the sin-
gle neurons and the neural networks with iterative dy-
namics (Lyapunov exponent, fractal and information
dimensions) were studied [13,14].

Asymmetric analog neural network with time de-
lay and random connectivity was studied in Ref. [15].
It was shown that this neural network produces chaos
which is similar to the human or animal EEGs. The
correlation dimension v and the largest Lyapunov ex-
ponent A obtained in Ref. [15] were in the range of
experimental values. Changes of the neural network
parameters allow to control the degree of chaos and
to produce sinusoidal or quasiperiodic outputs. The
control of the degree of chaos and transitions ”chaos—
order”, ”order-chaos” and ”chaos—chaos” with differ-
ent quantitative characteristics in this neural network
were achieved by varying both the amplitude and fre-
quency of the external sinusoidal force too [16]. It was
shown in [16] that in the case of resonance, when the
frequency of the external force coinsides with one of the
eigenfrequencies of spontaneous chaotic activity of the
neural network model, considerably smaller amplitudes
are necessary to convert chaotic output into sinusoidal
one than without resonance. The results of modelling
in [16] are in a qualitative agreement with the experi-
ments on controlling chaos in the brain [17-19].

The important role of chaos and noise in the neurons
and in the brain is extensively discussed in neurophysi-
ological and physical literature now (see reviews [20,21]
and references therein). Main attention is paid to the
sensory neurons which allow to encode small environ-
mental changes into spike trains. Recent experiments
show constructive role of noise which enhances infor-
mation transfer by stochastic resonance. Theoretical
studies have demonstrated stochastic resonance in dif-
ferent neuron models too.

External noise was also used for control purposes
in FitzHugh-Nagumo neuronal model [22] and for sup-
pression of a pathological rhythm in a cardiac model
[23].

In this paper, the results of study of an analog neural
network model with time delay which produces chaos
similar to the human and animal EEGs are presented.
Quantitative characteristics of the neural network out-
puts (correlation dimension, largest Lyapunov expo-
nent, Shannon entropy, normalized Shannon entropy,
signal-to-noise ratio (SNR)) are investigated. It is
shown that the increasing of the neural network asym-
metry (increasing of the neurons’ excitability) leads to
the phenomenon which is similar to the epilepsy. In
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this case, in the model, we observe synchronous large-
amplitude non-linear oscillations at the all neurons out-
puts, strong decreasing of the correlation dimension to
1.0-2.2 and zero values of the largest Lyapunov ex-
ponents. Obtained values of the correlation dimen-
sion in neural network model are close to ones which
are observed in the experimental epilepsy studies (2-
4). We also consider ‘anticontrol’ of chaos: the ac-
tion of the external low-dimensional chaotic force (not
the high-dimensional white noise, which have studied
previously in [22,23]) on the neural network with de-
veloped epilepsy-like pathological activity. Time series
for chaotic force are the outputs of this neural network
in case of usual (non-pathological) activity with devel-
oped low-dimensional chaos and correlation dimensions
in the range 5.8-7.5.

2. Model and method of analysis

The asymmetric analog neural network model with
the time delay and under the action of external low-
dimensional chaotic force which is considered in this
paper is described by the set of differential equations:

M
i(t) = —wi(t) — Y aij f(u;(t — 75)) + ei(2),

i=1
ii=1,2..M (1)

where u;(t) is the input signal of the ith neuron, M
i1s the number of neurons, a;; are the coupling coeffi-
cients between the neurons, 7; is the time delay of the
Jjth neuron output, f(z) = c - tanh(z — p), e(t) is the
external low-dimensional chaotic force, p is the thresh-
old of nonlinear function f(z). In this paper the case
is studied when the value of 7; is constant for all neu-
rons (75 = 7). The coupling coefficients are produced
by random numerical generator in the interval from
—2.048 to +2.048, the coefficient ¢ is used 1n order to
vary coefficients a;; simultaneously.

To solve equations (1) the fourth order Runge-Kutta
method is used with the time step A = 0.01. Small ran-
dom values of u;(0) are chosen as the initial values. For
the time ¢ in the interval from —7 to 0 each u;(¢) to be
zero. Time series of N = 100000 and N = 8192 points
are analysed since the stationary state is reached after
t,: = 108h. The frequency spectra are calculated using
the ordinary digital Fourier transform. For evaluation
of the number of the degrees of freedom the correlation
dimension v is calculated.

In order to calculate the largest Lyapunov exponent
in M-dimensional phase space two trajectories are com-
puted from equation (1): unperturbed ug () and per-
turbed u.(t) [24]. For the calculation of perturbed tra-



jectory after reaching of the stationary state the small
values €u; are added to u;. Here £ is in the range from
1014 to 10~%. The largest Lyapunov exponent is de-
fined as

— T : -1
A= lim lim ¢ In[D(t)/D(0)], (2)
where D(t) and D(0) are the distances between per-
turbed and unperturbed trajectories at the current and
at the initial moments, respectively. The largest Lya-
punov exponent A is calculated from time series of
N = 100000 points.

To determine the Shannon entropy Ssp character-
ized the degree of chaos in neural network the interval
of the amplitude variation from —4096 to +4096 is di-
vided into K = 128 subintervals, so that the subinter-
val length Agj is equal to 64. Then the probabilities py
to find the trajectory in kth subinterval are calculated.
The Shannon entropy is defined by equation

K

Ssh = -Zpk In py. 3)

k=1

Along with Sgp, renormalized Shannon entropy S,
is used. S, does not depend on the averaged effective
energy E, because for the calculation of S, we renor-
malize Agj, which is used in Eq. (3):

A, = 4\/EA5h, 4

where

g o

Here @ is the constant level of u, 4 = 4096 is the
normalization constant. Then renormalized Shannon
entropy S, is calculated from Eq. (3), but with the
new subinterval length A, defined by Eq. (4). Thus, to
determine S, we use only two momenta of the chaotic
signal: the mean value and the dispersion.

The averaged squared amplitude %,y in M-
dimensional phase space is calculated by equation

1/2

> (uiy —15)? . (6)

Signal-to-noise ratio (SNR) is defined as
SNR = Swo/snoise; (7)

where S, is the area of Fourier spectrum of the out-
put in the frequency interval wg #+ 0.013 for one main
peak (in dimensionless units), Speise is the rest area of
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Fourier spectrum up to cut-off dimensionless frequency
w = 40. Note, that this SNR . definition differs from
those which were used in studies of stochastic resonance
[20,21], because in our case we have no possibility to
determine the level of noise in the spectrum of neuron
output. In our neural network model, the spectrum of
low-dimensional chaotic signal has many peaks along
with very low level of background noise.

3. Simulation results and discussion

Calculations carried out show that asymmetric ana-
log neural network with the time delay and under ex-
ternal action of low-dimensional chaotic force demon-
strate periodic, quasiperiodic or chaotic outputs.
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Fig. 1. Time series of the neural network out-
puts for the bth neuron, depending on the excitabil-
ity @ (M=10, ¢=3.0, 7=10.0, ¢;(t)=0.0): @ = 0.0 (a),
@= 0.5 (b), and @ = 1.0 (c).

In the case when amplitude of external forces is zero,
the neural network produces chaotic outputs with the
correlation dimensions v = 5.8-7.5 (depending on the
ordinal number of the neuron) and the dimensionless



largest Lyapunov exponent A = 0.015. When we in-
crease the fraction of excitatory coupling coefficients
by variation of the average value

_ 1
a = W Z a;j, (8)
ilj

from 0 to 0.5, thereby, we replace chaotic neuron out-
puts by periodic ones. Characteristic time series for the
outputs of the 5th neuron in this case are shown in Fig.
la,b. The largest Lyapunov exponent changes the sign
from the positive value to zero one. Further increase
of @ to 1.0 leads only to the increase of neurons’ out-
put amplitudes (Fig. 1c). This phenomenon, when the
model demonstrate synchronous large-amplitude non-
linear oscillations at the all neurons outputs, strong
decreasing of the correlation dimension to 1.0-2.2 and
zero values of the largest Lyapunov exponents, is very
similar to the epilepsy. Obtained values of the corre-
lation dimension in neural network model are close to
ones which are observed in the experimental epilepsy
studies (2-4). However, there is disagreement with ex-
perimental research of the epilepsy in the signs of the
largest Lyapunov exponents: in the experiments, A has
the positive signs [1,3,4].

Figure 2 shows dependence of the neural network
output characteristics without an external action (cor-
relation dimension v, largest Lyapunov exponent A,
Shannon entropy Ssj, renormalized Shannon entropy
Sr, and averaged amplitude ;) on the degree of neu-
ronal excitability which is characterized by @. It is seen
from Fig. 2 that there are three different intervals of
@ within which the neural network have different types
of dynamics. If @ = —0.5 we obtain non-zero constant
solution. Increasing @, the solution becomes unstable,
and we have a growth of the correlation dimension v,
largest Lyapunov exponent A, Shannon entropy Ssi
and averaged amplitude u,,. When @ reaches value
—0.2 and up to @ = +0.4 we obtain the chaotic so-
lutions with the correlation dimension 4-8 which are
equal to ones obtained from the human and animal
EEG analysis [1-6]. The values of A, Sgp, Sr and U,q do
not change esentially on the interval —0.2 < @ < +0.4
too. When @ exceeds +0.4 we observe decreasing of
the correlation dimension to 1.0-2.2 and increasing of
the averaged amplitude by factor 3-5 (see also Fig. 1)
which are the features of the epileptic seizures [1,3,4].
This also leads to the decreasing of A and S, that points
out to the self-organization processes in neural net-
work model. Note, that decrease of S, is more clearly
shows decrease of neural network output complexity
than Sgqn.

Similar behavior is observed also in many non-
linear physical systems when growth of energy transfer
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through the system leads to the replacement of the
chaotic transport by the wave one. Such phase transi-
tion is the result of the instability development which
yields new steady state, in general, with another fea-
tures.
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Fig. 2. Correlation dimension v (a), largest Lya-
punov exponent A (b), Shannon entropy Sss (c), renor-
malized Shannon entropy S, (d), and averaged ampli-
tude T,q (€) vs @ M=10, c=3.0, 7=10.0, €;(¢)=0.0.



Figure 3 shows the dependences of the correlation
dimension v, largest Lyapunov exponent A, Shannon
entropy Ssp, remormalized Shannon entropy S, and
signal-to-noise ratio SNR on the amplitude of the ex-
ternal low-dimensional chaotic force e(t) in the case
of developed pathological rhythmic activity (‘anticon-
trol’) when @ = 0.5. As we stated above, the external
chaotic force e(t) is the neuron outputs of the neural
network without an external action and at @ = 0.0.
The ith component of the external force is applied to
the ith neuron in the neural network model. With
the increase of the external force amplitude, we ob-
serve chaotization of neural network outputs which is
indicated by the growth of the correlation dimension,
renormalized Shannon entropy and largest Lyapunov
exponent. The last quantity also becomes positive.
We see that v, A and S, have two maxima in their
dependences on e. One maximum occurs at the ampli-
tude of e = 0.6-0.8. In this case we completely restore
the degree of chaos in neural network, the correlation
dimension v varying from 4.0 to 7.5 and the largest
Lyapunov exponent achieving the values 0.015-0.020.

The next maximum at e = 1.4-1.6 gives only par-
tial restoration of chaos. Here we observe the values
of v and A which are smaller than those for ordinary
spontaneous (non-pathological) neural network activ-
ity. Further increase of the amplitude of the external
chaotic force produces only non-chaotic neural network
outputs.

Thus, in this paper, the existence of the optimal
external chaotic force amplitude for the suppression of
pathological rhythmic activity have demonstrated for
the first time.

If we consider dependence of SNR, as definded in
previous section, on e, we observe decrease of SNR for
small amplitudes e up to e = 0.8 and then two maxima:
one sharp maximum at e = 1.2 almost in all neuron
outputs and second broad maximum from e = 1.6 to
approximately e = 2.5-3.0 in four neuron outputs. In
this case, we observe amplification of SNR for the main
frequency peak of intrinsic neural network oscillations
by external low-dimensional chaotic force.

4. Conclusions

The results of study of an analog neural network
model with time delay which produces chaos similar
to the human and animal EEGs show that the in-
creasing of the neural network excitability leads to
the phenomenon which is similar to the epilepsy. In
this case, in the model, we observe synchronous large-
amplitude non-linear oscillations at the all neurons out-
puts, strong decreasing of the correlation dimension to

1.0-2.2 and zero values of the largest Lyapunov expo-
nents. Obtained values of the correlation dimension
in neural network model are close to ones which are
observed in the experimental epilepsy studies (2-4).
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Fig. 3. Correlation dimension v (a), largest Lya-
punov exponent A (b), Shannon entropy Ssp (c),
renormalized Shannon entropy S, (d), and signal-to-
noise ratio SNR (e) vs amplitude of the external low-
dimensional chaotic force e: M=10, ¢=3.0, r=10.0,
a=0.5.
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In the case of ‘anticontrol’, when we study the action
of the external low-dimensional chaotic force on the
neural network with developed epilepsy-like pathologi-
cal activity, we observe ‘phase transition’ from patho-
logical non-chaotic regime with zero Lyapunov expo-
nent to chaotic one with the positive Lyapunov expo-
nent at the optimal value of amplitude of the external
chaotic force. We also obtain the same values of the
correlation dimension in the regime of ‘anticontrol’, as
in the regime with usual excitability. ‘Anticontrol’ of
chaos using external chaotic force allows us to suppress
immediately pathological activity, rather faster then by
drugs.
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