Russian
| English
"Куда идет мир? Каково будущее науки? Как "объять необъятное", получая образование - высшее, среднее, начальное? Как преодолеть "пропасть двух культур" - естественнонаучной и гуманитарной? Как создать и вырастить научную школу? Какова структура нашего познания? Как управлять риском? Можно ли с единой точки зрения взглянуть на проблемы математики и экономики, физики и психологии, компьютерных наук и географии, техники и философии?"
English page

«25 Years of Self-Organized Criticality: Concepts and Controversies» Nicholas W. Watkins, Gunnar Pruessner, Sandra C. Chapman, Norma B. Crosby, and Henrik J. Jensen

Gunnar Pruessner

Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al., 2014; McAteer et al., 2014; Sharma et al., 2015) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities.

«Emergence: A unifying theme for 21st century science» David Pines - Co-Founder in Residence, Santa Fe Institute

David Pines

As we educate ourselves, our colleagues, and the public at large about emergence, I would like to suggest two challenges for SFI that relate to its potential role as a world leader in science education. First, given the importance of emergence as a unifying paradigm for science, can the SFI community help spread the word about emergence to learners of all ages? Could we, for example, create an online course that introduces middle and high school students to science through the study of emergent behavior – and helps them develop an emergent perspective on the world around them? Could we increase the focus on emergent behavior in our existing educational programs, beginning with our middle school programs, and infuse this kind of thinking into our signature summer schools? Second, can we create an online “Gateways Registry”? This would be an accessible, jargon-free catalogue of existing organizing concepts and principles that have been successfully incorporated into models that explain emergent behavior. We would then add new ones as they are discovered. In my view, it is the Institute’s responsibility to capture and catalogue what we have learned about gateways to emergence for the benefit of future generations of scientists. — David Pines

«Network Structures in Biological Systems and in Human Society» Alexander V. Oleskin

А.В. Олескин

This book focuses on network structures in biological systems and in human society. The term “network structure” is used in the literature in at least two different meanings. The broader meaning (denoted by this author as a network sensu lato) refers to any system composed of nodes (vertices) connected by links (edges). In terms of this interpretation, the analytical tools that deal with centrality measures, clustering- and community structure-related criteria, small-world behavior, and other network characteristics have provided important insights into the organization and functioning of various objects, including biological systems and human society.

«Introduction to the Theory of Intersubjective Management» Vladimir A. Vittikh

В.А. Виттих

The article proposes principles of construction of the theory of intersubjective management, based on postnonclassical scientific rationality and on concept of a free society, wherein the stake is made on non-violent means of decision-making oriented towards attainment of mutual understanding and consensus of heterogeneous actors who are in a problem situation and aimed to settle it. The actors not only cognize the world, but they create it. When occurs that they are bound by a common problem situation, the actors, possessing, by their nature, intersubjective mind, realize it differently, although they recognize simultaneously the necessity of any coordinated actions to control the situation. Following the conventional concept of truth by Poincaré, who interpreted the truth as the result of a convention, an agreement may be achieved to recognize certain subjective knowledge to be true for a restricted circle of actors. Such knowledge may be called intersubjective. In contrast to the bureaucratic theory that ignores individual qualities of the human being and sees it as a “cog” in the administrative mechanism, the theory of intersubjective management proceeds from the fact that the reserves of management efficiency rise should be sought not in the bureaucratic machine modernization, but in the human being, in every person, in the use of his intellectual and volitional resources.

«NONLINEAR DYNAMICS AND THE PROBLEMS OF PREDICTION DISCUSSION AT THE RAS PRESIDIUM» G.G. Malinetskii and S.P. Kurdyumov

С. П. Курдюмов

Everyone takes an interest in forecasts, both the specialist and the man on the street. Both wish to know the extent of reliability of complex engineering structures like nuclear power stations, aircraft, and ocean liners, or to receive timely information about an approaching tsunami or an impending earthquake. In recent years, thanks to advances in nonlinear dynamics, risk management theory, and self-organized criticality theory, some fundamental limitations of forecasts were identified. These limitations were discussed at a RAS presidium meeting held at the end of 2000. The meeting’s deliberations formed the basis of the paper and discussion below.

«QUASICLASSICAL COARSE GRAINING AND THERMODYNAMIC ENTROPY» Murray Gell-Mann and James B. Hartle

Murray Gell-Mann

Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of “quasiclassical descriptions” defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a “quasiclassical realm” this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since

«SCALING IN MODELLING GLOBAL POPULATION GROWTH» Sergey P. Kapitza

С.П.Капица

Global population growth is described over practically the whole of human history by assuming self-similarity as the dynamic principle of development. Nonlinear growth is proportional to the square of the number of people due to a collective interaction of an informational nature. Estimates of the beginning of human development 4 – 5 million years ago and of the total number of people who have ever lived since then 100 billion are made. Large scale cycles, defined by history and anthropology, are shown to follow an exponential pattern of growth, culminating in the demographic transition. A veritable revolution, when global population growth is to stabilize at 10 – 12 billion in the foreseeable future.

«NONLINEAR SYNTHESIS AND CO-EVOLUTION OF COMPLEX SYSTEMS» Helena Knyazeva and Sergei P. Kurdyumov

Елена Князева

Today a change is imperative in approaching global problems: what is needed is not arm-twisting and power politics, but searching for ways of co-evolution in the complex social and geopolitical systems of the world. The modern theory of self-organization of complex systems provides us with an understanding of the possible forms of coexistence of heterogeneous social and geopolitical structures at different stages of development regarding the different paths of their sustainable co-evolutionary development. The theory argues that the evolutionary channel to the observed increasing complexity is extremely narrow and only certain discrete spectra of relatively stable self-maintained structures are feasible in complex systems. There exists a restricted set of ways of assembling a complex evolutionary whole from diverse parts. The law of nonlinear synthesis of complex structures reads: the integration of structures in more complex ones occurs due to the establishment of a common tempo of their evolution. On the basis of the theory, we can see not only desirable but also attainable futures.

«SYNERGETICS AND HIGH TECHNOLOGIES THE PART AND THE WHOLE» George Malinetsky Ph.D . (Physics & Mathematics), Professor

Г.Г. Малинецкий

Why is it that a whole can acquire properties that are not intrinsic to any of its parts? Many of us have been confronted with a situation where each member of a collective is «against» or hesitates, whereas the overall vote is affirmative. The same problem can be noticed in chemical kinetics. Chemical transformations take place at the molecular level, but oscillatory reactions exist where almost all of the molecules start to run synchronously, as if on a mutual agreement, or obeying the rule of an invisible director. In this case, the solution in the test tube can periodically change its color, becoming now blue, and now red. One of the fundamental problems in biology is that of morphogenesis. As believed by biologists, each cell has one and the same set of genes. Then how is it that these cells, in the course of the development of the organism, «know» which of them are to become brain cells, or which of them are to become heart cells? In 1952, the attempt of Alan Turing, one of the fathers of cybernetics, to construct an exceedingly simple model for explaining this selection, marked the birth of synergetics.

«ECONOMICS: THE NEXT PHYSICAL SCIENCE?» J. Doyne Farmer

J. Doyne Farmer

We review an emerging body of work by physicists addressing questions of economic organization and function. We suggest that, beyond simply employing models familiar from physics to economic observables, remarkable regularities in economic data may suggest parts of social order that can usefully be incorporated into, and in turn can broaden, the conceptual structure of physics. In the last decade or so physicists have begun to do academic research in economics in a newly emerging field often called “econophysics”. Perhaps a hundred people are now actively involved, with two new journals1 and frequent conferences. At least ten books have been written on econophysics in general or specific subtopics (We are restricted by citation limits here, but an extensive bibliography of the books and archived articles is maintained on the econophysics website, http://www.unifr.ch/econophysics).