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Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction
of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics
is made natural by our limited powers of observation and computation. But in the modern quantum
mechanics of closed systems, some measure of coarse graining is inescapable because there are no
non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that
fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually
incompatible. For most purposes, however, we are interested in the small subset of “quasiclassical
descriptions” defined by ranges of values of averages over small volumes of densities of conserved
quantities such as energy and momentum and approximately conserved quantities such as baryon
number. The near-conservation of these quasiclassical quantities results in approximate decoher-
ence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any
description, information is sacrificed through the coarse graining that yields decoherence and gives
rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in
exhibiting the emergent regularities summarized by classical equations of motion. An appropriate
entropy measures the loss of information. For a “quasiclassical realm” this is connected with the
usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state
of our universe and has been increasing since.

I. INTRODUCTION

Coarse graining is of the greatest importance in theo-
retical science, for example in connection with the mean-
ing of regularity and randomness and of simplicity and
complexity [1]. Of course it is also central to statisti-
cal mechanics, where a particular kind of coarse grain-
ing leads to the usual physico-chemical or thermody-
namic entropy. We discuss here the crucial role that
coarse graining plays in quantum mechanics, making pos-
sible the decoherence of alternative histories and enabling
probabilities of those decoherent histories to be defined.
The “quasiclassical realms” that exhibit how classical
physics applies approximately in this quantum universe
correspond to coarse grainings for which the histories
have probabilities that exhibit a great deal of approxi-
mate determinism. In this article we connect these coarse
grainings to the ones that lead, in statistical mechanics,
to the usual entropy.

Our everyday descriptions of the world in terms of
nearby physical objects like tables and clouds are exam-
ples of very coarse-grained quasiclassical realms. At any
one time, these everyday descriptions follow only a tiny
fraction of the variables needed for a fine-grained descrip-
tion of the whole universe; they integrate over the rest.
Even those variables that are followed are not tracked
continuously in time, but rather sampled only at a se-
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quence of times1.

A classical gas of a large number of particles in a
box provides other excellent examples of fine and coarse
graining. The exact positions and momenta of all the
particles as a function of time give the perfectly fine-
grained description. Useful coarse-grained descriptions
are provided by dividing the box into cells and specify-
ing the volume averages of the energy, momentum, and
particle number in each. Coarse graining can also be ap-
plied to ranges of values of the variables followed. This
is an example in a classical context of what we will call
a quasiclassical coarse graining. As we will describe in
more detail below, under suitable initial conditions and
with suitable choices for the volumes, this coarse graining
leads to a deterministic, hydrodynamic description of the
material in the box. We need not amplify on the utility
of that.

In classical physics, coarse graining arises from practi-
cal considerations. It might be forced on us by our puny
ability to collect, store, recall, and manipulate data. Par-
ticular coarse grainings may be distinguished by their
utility. But there is always available, in principle, for
every physical system, an exact fine-grained description
that could be used to answer any question, whatever the
limitations on using it in practice.

In the modern formulation of the quantum mechanics

1 This is not the most general kind of coarse graining. One can
have instead a probability distribution characterized by certain
parameters that correspond to the expected values of particular
quantities, as in the case of absolute temperature and the energy
in a Maxwell-Boltzmann distribution [1].
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of a closed system — a formulation based on histories —
the situation is different. The probability that either of
two exclusive histories will occur has to be equal to the
sum of the individual probabilities. This will be impos-
sible in quantum mechanics unless the interference term
between the the two is made negligible by coarse grain-
ing. That absence of interference is called decoherence.
There is no (non-trivial) fine-grained, probabilistic de-
scription of the histories of a closed quantum-mechanical
system. Coarse graining is therefore inescapable in quan-
tum mechanics if the theory is to yield any predictions
at all.

Some of the ramifications of these ideas are the follow-
ing:

• Quantum mechanics supplies probabilities for the
members of various decoherent sets of coarse-
grained alternative histories — different ‘realms’ for
short. Different realms are compatible if each one
can be fine-grained to yield the same realm. (We
have a special case of this when one of the realms
is a coarse graining of the other.) Quantum me-
chanics also exhibits mutually incompatible realms
for which there is no finer-grained decoherent set of
which they are both coarse grainings.

• Quantum mechanics by itself does not favor one
realm over another. However, we are interested for
most purposes in the family of quasiclassical realms
underlying everyday experience — a very small
subset of the set of all realms. Roughly speaking, a
quasiclassical realm corresponds to coarse graining
which follows ranges of the values of variables that
enter into the classical equations of motion.

• Having non-trivial probabilities for histories re-
quires the sacrifice of information through the
coarse graining necessary for decoherence.

• Coarse graining beyond that necessary for decoher-
ence is needed to achieve the predictability repre-
sented by the approximate deterministic laws gov-
erning the sets of histories that constitute the qua-
siclassical realms.

• An appropriately defined entropy that is a function
of time is a useful measure of the information lost
through a coarse graining defining a quasiclassical
realm.

• Such a coarse graining, necessary for having both
decoherence and approximate classical predictabil-
ity, is connected with the coarse graining that de-
fines the familiar entropy of thermodynamics.

• The entropy defined by a coarse graining associated
with a quasiclassical realm must be sufficiently low
at early times in our universe (that is, low for the
coarse graining in question) so that it tends to in-
crease in time and exhibit the second law of ther-
modynamics. But for this the relaxation time for

the increase of entropy must also be long compared
with the age of the universe. From this point of
view the universe is very young.

• The second law of thermodynamics, the family of
quasiclassical realms, and even probabilities of any
kind are features of our universe that depend, not
just on its quantum state and dynamics, but also
crucially on the inescapable coarse graining neces-
sary to define those features, since there is no exact,
completely fine-grained description.

Many of these remarks are contained in our earlier
work [2–10] or are implicit in it or are contained in the
work of others e.g. [11, 12] and the references therein.
They are developed more extensively here in order to em-
phasize the central and inescapable role played by coarse
graining in quantum theory. What is new is the detailed
analysis of the triviality of completely fine-grained his-
tories, the role of narrative, and, most importantly, the
central result that the coarse graining defining the qua-
siclassical realms in quantum theory is closely related to
the coarse graining defining the usual entropy of chem-
istry and physics.

The reader who is familiar with our previous work and
notation can immediately jump to Section III. But for
those who are not we offer a very brief summary in the
next section.

II. THE QUANTUM MECHANICS OF A
CLOSED SYSTEM

This section gives a bare-bones account of some essen-
tial elements of the modern synthesis of ideas characteriz-
ing the quantum mechanics of closed systems [7, 11, 12].

To keep the discussion manageable, we consider a
closed quantum system, most generally the universe, in
the approximation that gross quantum fluctuations in the
geometry of spacetime can be neglected. (For the gener-
alizations that are needed for quantum spacetime see e.g.
[13, 14].) The closed system can then be thought of as a
large (say >

∼ 20,000 Mpc), perhaps expanding box of par-
ticles and fields in a fixed background spacetime. Every-
thing is contained within the box, in particular galaxies,
planets, observers and observed , measured subsystems,
and any apparatus that measures them. This is the most
general physical context for prediction.

The fixed background spacetime means that the no-
tions of time are fixed and that the usual apparatus of
Hilbert space, states, and operators can be employed in
a quantum description of the system. The essential theo-
retical inputs to the process of prediction are the Hamil-
tonian H governing evolution (which we assume for sim-
plicity to be time-reversible2) and the initial quantum

2 For the issues arising from the time asymmetry of the effective
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condition (which we assume to be a pure state3 |Ψ〉).
These are taken to be fixed and given.

The most general objective of quantum theory is the
prediction of the probabilities of individual members of
sets of coarse-grained alternative histories of the closed
system. For instance, we might be interested in alter-
native histories of the center-of-mass of the earth in its
progress around the sun, or in histories of the correlation
between the registrations of a measuring apparatus and a
property of the subsystem. Alternatives at one moment
of time can always be reduced to a set of yes/no ques-
tions. For example, alternative positions of the earth’s
center-of-mass can be reduced to asking, “Is it in this re-
gion – yes or no?”, “Is it in that region – yes or no?”, etc.
An exhaustive set of yes/no alternatives is represented in
the Heisenberg picture by an exhaustive set of orthogo-
nal projection operators {Pα(t)}, α = 1, 2, 3 · · · . These
satisfy

∑

α
Pα(t) = I, and Pα(t)Pβ(t) = δαβPα(t) , (2.1)

showing that they represent an exhaustive set of exclusive
alternatives. In the Heisenberg picture, the operators
Pα(t) evolve with time according to

Pα(t) = e+iHt/h̄Pα(0) e−iHt/h̄ . (2.2)

The state |Ψ〉 is unchanging in time.
Alternatives at one time can be described by express-

ing their projections in terms of fundamental coordinates,
say a set of quantum fields and their conjugate momenta.
In the Heisenberg picture these coordinates evolve in
time. A given projection can be described in terms of
the coordinates at any time. Thus, at any time it repre-
sents some alternative [8].

An important kind of set of exclusive histories is spec-
ified by sets of alternatives at a sequence of times t1 <
t2 < · · · < tn. An individual history α in such a set is a
particular sequence of alternatives α ≡ (α1, α2, · · · , αn).
Such a set of histories has a branching structure in which
a history up to any given time tm ≤ tn branches into
further alternatives at later times. ‘Branch’ is thus an
evocative synonym for such a history.

In such sets, we denote a projection at time tk by

P k
αk

(tk; αk−1, · · · , α1) . (2.3)

We now explain this notation.
Alternatives at distinct times can differ and are distin-

guished by the superscript k on the P ’s. For instance,
projections on ranges of position at one time might be

low-energy theory of the elementary particles in our local neigh-
borhood of the universe, see e.g. [6].

3 From the perspective of the time-neutral formulation of quan-
tum theory (e.g. [6]), we are assuming also a final condition of
ignorance.

followed by projections on ranges of momentum at the
next time, etc.

In realistic situations the alternatives will be branch-
dependent. In a branch-dependent set of histories the
set of alternatives at one time depends on the particu-
lar branch. In (2.3) the string αk−1, · · ·α1 indicates this
branch dependence. For example, in describing the evo-
lution of the earth, starting with a protostellar cloud,
a relatively coarse-grained description of the interstellar
gas might be appropriate in the beginning, to be followed
by finer and finer-grained descriptions at one location on
the branch where a star (the sun) condensed, where a
planet (the earth) at 1AU won the battle of accretion in
the circumstellar disk, etc. — all events which happen
only with some probability. Adaptive mesh refinement in
numerical simulations of hydrodynamics provides a some-
what analogous situation.

An individual history α corresponding to a particu-
lar sequence of alternatives α ≡ (α1, α2, · · · , αn) is rep-
resented by the corresponding chain of projections Cα,
called a class operator. In the full glory of our notation
this is:

Cα ≡ Pn
αn

(tn; αn−1, · · · , α1) · · ·P
2
α2

(t2; α1)P
1
α1

(t1) .
(2.4)

To keep the notation manageable we will sometimes not
indicate the branch dependence explicitly where confu-
sion is unlikely.

Irrespective of branch dependence, a set of histories
like one specified by (2.4) is generally coarse-grained be-
cause alternatives are specified at some times and not
at every time and because the alternatives at a given
time are typically projections on subspaces with dimen-
sion greater than one and not projections onto a com-
plete set of states. Perfectly fine-grained sets of histories
consist of one-dimensional projections at each and every
time.

Operations of fine and coarse graining may be defined
on sets of histories. A set of histories {α} may be fine
-grained by dividing up each class into an exhaustive set
of exclusive subclasses {α′}. Each subclass consists of
some histories in a coarser-grained class, and every finer-
grained subclass is in some class. Coarse graining is the
operation of uniting subclasses of histories into bigger
classes. Suppose, for example, that the position of the
earth’s center-of-mass is specified by dividing space into
cubical regions of a certain size. A coarser-grained de-
scription of position could consist of larger regions made
up of unions of the smaller ones. Consider a set of histo-
ries with class operators {Cα} and a coarse graining with
class operators {C̄ᾱ} . The operators {C̄ᾱ} are then re-
lated to the operators {Cα} by summation, viz.

C̄ᾱ =
∑

α∈ᾱ

Cα , (2.5)

where the sum is over the Cα for all finer-grained histories
α contained within ᾱ.
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For any individual history α, there is a branch state
vector defined by

|Ψα〉 = Cα|Ψ〉 . (2.6)

When probabilities can be consistently assigned to the
individual histories in a set, they are given by

p(α) =‖ |Ψα〉 ‖
2=‖ Cα|Ψ〉 ‖2 . (2.7)

However, because of quantum interference, probabilities
cannot be consistently assigned to every set of alternative
histories that may be described. The two-slit experiment
provides an elementary example: An electron emitted by
a source can pass through either of two slits on its way
to detection at a farther screen. It would be inconsistent
to assign probabilities to the two histories distinguished
by which slit the electron goes through if no “measure-
ment” process determines this. Because of interference,
the probability for arrival at a point on the screen would
not be the sum of the probabilities to arrive there by go-
ing through each of the slits. In quantum theory, proba-
bilities are squares of amplitudes and the square of a sum
is not generally the sum of the squares.

Negligible interference between the branches of a set

〈Ψα|Ψβ〉 ≈ 0 , α 6= β , (2.8)

is a sufficient condition for the probabilities (2.7) to be
consistent with the rules of probability theory. The or-
thogonality of the branches is approximate in realistic
situations. But we mean by (2.8) equality to an accu-
racy that defines probabilities well beyond the standard
to which they can be checked or, indeed, the physical
situation modeled [4].

Specifically, as a consequence of (2.8), the probabilities
(2.7) obey the most general form of the probability sum
rules

p(ᾱ) ≈
∑

α∈ᾱ

p(α) (2.9)

for any coarse graining {ᾱ} of the {α}. Sets of histories
obeying (2.8) are said to (medium) decohere. As L. Diósi
has shown [15], medium decoherence is the weakest of
known conditions that are consistent with elementary no-
tions of the independence of isolated systems4. Medium-
decoherent sets are thus the ones for which quantum
mechanics consistently makes predictions of probabilities
through (2.7). Weaker conditions, such as those defining
merely “consistent” histories, are not appropriate.

The decoherent sets exhibited by our universe are de-
termined through (2.8) and by the Hamiltonian H and
the quantum state |Ψ〉. We use the term realm as a syn-
onym for a decoherent set of coarse-grained alternative
histories.

4 For a discussion of the linear positive, weak, medium, and strong
decoherence conditions, see [3, 10, 16].

A coarse graining of a decoherent set is again deco-
herent. A fine-graining of a decoherent set risks losing
decoherence.

It is more general to allow a density matrix ρ as the
initial quantum state. Decoherence is then defined in
terms of a decoherence functional.

D(α, β) = Tr (CαρC†
β) . (2.10)

The rules for both decoherence and the existence of prob-
abilities can then be expressed in a single formula

D(α, β) ≈ δαβp(α) . (2.11)

When the density matrix is pure, ρ = |Ψ〉〈Ψ|, the con-
dition (2.11) reduces to the decoherence condition (2.8)
and the probabilities to (2.7).

An important mechanism of decoherence is the dissipa-
tion of phase coherence between branches into variables
not followed by the coarse graining. Consider by way of
example, a dust grain in a superposition of two positions
deep in interstellar space [17]. In our universe, about
1011 cosmic background photons scatter from the dust
grain each second. The two positions of the grain be-
come correlated with different, nearly orthogonal states
of the photons. Coarse grainings that follow only the
position of the dust grain at a few times therefore corre-
spond to branch state vectors that are nearly orthogonal
and satisfy (2.9).

Measurements and observers play no fundamental role
in this general formulation of usual quantum theory. The
probabilities of measured outcomes can be computed and
are given to an excellent approximation by the usual
story. But, in a set of histories where they decohere,
probabilities can be assigned to the position of the moon
when it is not receiving the attention of observers and
to the values of density fluctuations in the early universe
when there were neither measurements taking place nor
observers to carry them out.

The probabilities of the histories in the various realms
and the conditional probabilities constructed from them
constitute the predictions of the quantum mechanics of a
closed system given the Hamiltonian H and initial state
|Ψ〉.

III. INESCAPABLE COARSE GRAINING

In this section and Appendix A, we show that there are
no exactly decoherent, completely fine-grained sets of al-
ternative histories describing a closed quantum system
except trivial ones which essentially reduce to a descrip-
tion at only one time. (In Appendix B, we also show that
there is no certainty except that arising from the unitary
evolution controlled by the Hamiltonian.)

A set of alternatives at one time is completely fine-
grained if its projections are onto an orthonormal basis
for Hilbert space. Specifically,

Pi(t) = |i〉〈i| (3.1)
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where {|i〉} , i = 1, 2, · · · are a set of orthonormal basis
vectors. Any basis defines at any time some set of alter-
natives [8].

Probabilities are predicted for any fine-grained set of
alternatives at one time. The branch state vectors are

|Ψi〉 = Pi(t)|Ψ〉 = |i〉〈i|Ψ〉 . (3.2)

These are mutually orthogonal and therefore decohere
[cf. (2.8)]. The consistent probabilities are

p(i) = |〈i|Ψ〉|2 . (3.3)

A completely fine-grained description does not consist
merely of fine-grained alternatives at one time but rather
of fine-grained alternatives at each and every available
time. Specifically, a completely fine-grained set of his-
tories is a set of alternative histories specified by sets of
fine-grained alternatives like (3.1) at every available time.

To avoid the mathematical issues that arise in defining
continuous infinite products of projections [cf. (2.4)], we
will assume that the available times are restricted to a
large discrete series t1, · · · , tn in a fixed interval [0, T ].
Physically there can be no objection to this if the inter-
vals between times is taken sufficiently small (if necessary
of order the Planck time). More importantly, the absence
of decoherent sets with a finite number of times prohibits
the existence of any finer-grained decoherent sets, how-
ever they are defined.

A completely fine-grained set of histories is then spec-
ified by a series of bases {|1, i1〉}, {|2, i2〉}, · · · , {|n, in〉}
defining one dimensional projections of the form (3.1).
In |k, ik〉 the first argument labels the basis, the second
the particular vector in that basis. To get at the essen-
tials of the argument, we will assume in this section the
generic situations where there are no branch state vec-
tors that vanish. More particularly, we assume that none
of the matrix elements 〈k +1, ik+1|k, ik〉 or 〈1, i1|Ψ〉 van-
ishes. Put differently, we assume that none of the ques-
tions at each time is trivially related to a question at the
next time or to the initial state. The general case where
these assumptions are relaxed is dealt with in Appendix
A along with the related notion of trivial decoherence
that arises.

The branch state vectors for the histories (i1, · · · , in)
in such a completely fine-grained set have the form

|n, in〉〈n, in|n − 1, in−1〉 · · · 〈2, i2|1, i1〉〈1, i1|Ψ〉 . (3.4)

The condition for decoherence (2.8) requires

〈Ψ|1, i′1〉〈1, i′1|2, i′2〉 · · · 〈n, i′n|n, in〉 · · ·

×〈2, i2|1, i1〉〈1, i1|Ψ〉 = 0 (3.5)

whenever any i′k 6= ik. But, by assumption, none of these
matrix elements vanishes so there are no exactly deco-
herent, completely fine-grained sets of this kind.

To get a different perspective, suppose that 〈1, i1|Ψ〉
is allowed to vanish for some i1 but the restriction that

〈k, ik|k−1, ik−1〉 6= 0 is retained. Then (3.5) could be sat-
isfied provided there is only one i1 for which 〈1, i1|Ψ〉 6= 0.
But since {|1, i1〉} is a basis, this means it must consist
of |Ψ〉 and a complete set of orthogonal vectors. But
that means that the first set of alternatives is trivial. It
merely asks, “Is the state |Ψ〉 or not?” As explained in
Appendix A, there are no exactly decoherent, completely
fine-grained sets of alternative histories of a closed quan-
tum system that are not trivial in this or similar senses.
Coarse graining is therefore inescapable.

IV. COMMENTS ON REALMS

A perfectly fine-grained set of histories can be coarse-
grained in many different ways to yield a decoherent set
whose probabilities can be employed in the process of
prediction. Furthermore, there are many different com-
pletely fine-grained sets to start from, corresponding to
the possible choices of the bases {|k, ik〉} at each time
arising from different complete sets of commuting observ-
ables. Once these fine-grained sets are coarse-grained
enough to achieve decoherence, further coarse graining
preserves decoherence. Some decoherent sets can be or-
ganized into compatible families all members of which
are coarse grainings of a common finer-grained decoher-
ent set. But there remain distinct families of decoherent
sets which have no finer-grained decoherent sets of which
they are all coarse grainings. As mentioned in the Intro-
duction, these are called incompatible realms.

We may not draw inferences by combining probabil-
ities from incompatible realms.5 That would implicitly
assume, contrary to fact, that probabilities of a finer-
grained description are available. Incompatible decoher-
ent sets provide different, incompatible descriptions of
the universe. Quantum theory does not automatically
prefer one of these realms over another without further
criteria such as quasiclassicality.

Note that incompatibility is not inconsistency in the
sense of predicting different probabilities for the same
histories in different realms. The probability for a history
α is given by (2.7) in any realm of which it is a member.

While quantum theory permits a great many incom-
patible realms for the description of a closed system, we
as observers utilize mainly sets that are coarse grainings
of one family of such realms — the quasiclassical realms
underlying everyday experience.6 We now turn to a char-

5 It has been shown, especially by R. Griffiths [11], that essentially
all inconsistencies alleged against consistent histories quantum
mechanics (or, for that matter, decoherent histories quantum
mechanics) arise from violating this logical prohibition.

6 Some authors, notably Dowker and Kent [18], have suggested
that quantum mechanics is incomplete without a fundamental
set selection principle that would essentially single out the qua-
siclassical realms from all others. The following discussion of the
properties of quasiclassical realms could be viewed as steps in
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acterization of those.
The histories of a quasiclassical realm constitute nar-

ratives. That is, they describe how certain features of
the universe change over time. A narrative realm is a
particular kind of set of histories in which the projec-
tions at successive times are related by a suitable rule.
That way the histories are stories about what happens
over time and not simply unrelated or redundant scraps
of information from a sequence of times.

The simplest rule is for the projections to represent the
same alternatives at different times, that is

P k
α(tk) = eiHtk/h̄ P̂αe−iHtk/h̄ (4.1)

for some set {P̂α}. Put differently, this rule corresponds
to taking the same set of projections in the Schrödinger
picture at each time. A sum-over-histories formulation
therefore leads naturally to narrative realms. Restrict-
ing the candidates for quasiclassical realms to narrative
realms eliminates a number of trivial kinds of realm with
a high level of predictability but little or no utility. Ex-
amples are realms that mindlessly repeat the same set
of Heisenberg picture projection operators at each and
every time, and the trivial fine-grained realms described
in Section III.A and Appendix A. In each of these ex-
amples nothing happens! For instance, the repetition of
the same Heisenberg picture operators at each time leads
to the following form for the Cα in terms of Schrödinger
picture projections

Cα = P̂ 1
αn

· · · P̂ 1
α1

. (4.2)

The only non-vanishing Ĉ’s are just the projections P̂ 1
α1

.
In the next section we will present a straightforward
model that obeys (4.1), but in a more realistic situation
the histories will be more complicated, especially because
they exhibit branch dependence.

It remains to specify carefully what is a suitable rule
for relating the projection operators in each history at
successive times, thus providing a general definition of a
narrative realm. We are searching for the best way to do
that, using ideas about simpliciy, complexity, and logical
depth presented in [1].

V. THE QUASICLASSICAL REALM(S)

As discussed in Section II, coarse graining is necessary
for probability. The families of decoherent sets of coarse-
grained histories give rise to descriptions of the universe
that are often incompatible with one another. As in-
formation gathering and utilizing systems (IGUSes), we
use, both individually and collectively, only a very lim-
ited subset of these descriptions belonging to a compati-
ble family of realms with histories and probabilities that

that direction. We prefer to keep the fundamental formulation
clean and precise by basing it solely on the notion of decoherence.

manifest certain regularities of the universe associated
with classical dynamical laws. These regularities include
ones that are exploitable in our various pursuits, such as
getting food, reproducing, avoiding becoming food, and
achieving recognition. Such sets of histories are defined
by alternatives that include ones which our perception is
adapted to distinguish. As we will see, coarse graining
very far beyond that necessary for mere decoherence is
necessary to define the sets that exhibit the most useful
of these regularities.

Specific systems like the planet Mars, Western cul-
ture, and asparagus exhibit various kinds of particular
exploitable regularities. But the most widely applicable
class of regularities consists of the correlations in time
governed by the deterministic laws of motion of clas-
sical physics. In our quantum universe, classical laws
are approximately applicable over a wide range of times,
places, scales, and epochs. They seem to hold approxi-
mately over the whole of the visible universe from a time
shortly after the beginning to the present. Indeed, we
expect them to hold into the far future. We refer to the
family of decoherent sets of coarse-grained histories that
describe these regularities as the family of quasiclassical
realms.

The characteristic properties of a quasiclassical realm
all follow from the approximate conservation of the vari-
ables that define them, which we call quasiclassical vari-
ables. As we will illustrate with a specific model below,
these include averages of densities of quantities such as
energy and momentum that are exactly conserved7. But
they also include densities of quantities such as baryon
number that may be conserved only to an approximation
that varies with the epoch.

Approximate conservation leads to predictability in the
face of the noise that accompanies typical mechanisms of
decoherence. Approximate conservation allows the local
equilibrium that leads to closed sets of classical equations
of motion summarizing that predictability. This local
equilibrium is the basis for the definition of an entropy
implementing the second law of thermodynamics.

More specifically, in this paper, by a quasiclassical
realm we mean an exhaustive set of mutually exclusive
coarse-grained alternative histories that obey medium de-
coherence with the following additional properties: The
histories consist largely of related but branch-dependent
projections onto ranges of quasiclassical variables at a
succession of times. Each history constitutes a narrative,
with individual histories exhibiting patterns of correla-
tion implied by closed sets of effective equations of motion
interrupted by frequent small fluctuations and occasional
major branchings (as in measurement situations). By a
family of quasiclassical realms we mean a set of com-

7 Their exact conservation reflects the local symmetries of the ap-
proximately fixed spacetime geometry that emerges from the
quantum-gravitational fog near the beginning.
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patible ones that are all coarse grainings of a common
one. Useful families span an enormous range of coarse
graining. Quasiclassical realms describing everyday ex-
perience, for instance, may be so highly coarse-grained
as to refer merely to the features of a local environment
deemed worthy of an IGUS’s attention. At the other
end of the range are the quasiclassical realms that are
as fine-grained as possible given decoherence and quasi-
classicality. Those realms extend over the wide range of
time, place, scale and epoch mentioned above. These
coarse grainings defining the maximally refined quasi-
classical realms are not a matter of our choice. Rather,
those maximal realms are a feature of our universe that
we exploit — a feature that is emergent from the initial
quantum state, the Hamiltonian, and the extremely long
sequence of outcomes of chance events8.

A. Quasiclassical Variables

To build a simple model with a coarse graining that
defines a quasiclassical realm, we begin with a large box
containing local quantum fields. The interactions of these
fields are assumed to be local and, for simplicity, to re-
sult in short-range forces on bulk matter. Spacetime is
assumed to be nearly flat inside the box so that large
fluctuations in the geometry of spacetime are neglected.
This is a reasonably general model for much of physics
in the late universe.

Space inside the box is divided into equal volumes of
size V labeled by a discrete index ~y. (The branch depen-
dence of volumes described in Section II is thus ignored.)
The linear dimensions of the volumes are assumed to be
large compared to the ranges of the forces. Quasiclassical
variables are constructed as averages over these volumes
of conserved or approximately conserved extensive quan-
tities. These will include energy and linear momentum
since spacetime is treated as flat. There might be many
conserved or approximately conserved species of parti-
cles. To keep the notation manageable we consider just
one.

To be explicit, let T αβ(~x, t) be the stress-energy-
momentum operator for the quantum fields in the Heisen-
berg picture. The energy density ǫ(~x, t) and momentum

8 In previous work we have taken the term ‘quasiclassical realm’
to be defined in some respects more generally and in other re-
spects more restrictively than we have here [2]. To investigate
information-theoretic measures for quasiclassicality, we left open
the possibility that there might be realms exhibiting determin-
istic correlations in time defined by variables different from the
quasiclassical variables. The ‘quasiclassical realms’ of this pa-
per were called ‘usual quasiclassical realms’. We also required
that every quasiclassical realm be maximal in the sense discussed
above so that it was an emergent feature of the universe and not
our choice. For the limited objectives of this paper it seems best
to employ the simpler terminology that we have used here rather
than seek exact consistency.

density πi(x, t) are T tt(~x, t) and T ti(~x, t) respectively.
Let ν(~x, t) denote the number density of the conserved
or nearly conserved species. Then we define

ǫV (~y, t) ≡
1

V

∫

~y

d3x ǫ(~x, t) (5.1a)

~πV (~y, t) ≡
1

V

∫

~y

d3x~π(~x, t) (5.1b)

νV (~y, t) ≡
1

V

∫

~y

d3x ν(~x, t) (5.1c)

where in each case the integral is over the volume labeled
by ~y. These are the quasiclassical variables for our model.
We note that the densities in (5.1) are the variables for
a classical hydrodynamic description of this system —
for example, the variables of the Navier-Stokes equation.
In more general situations, these might be augmented by
further densities of conserved or nearly conserved species,
field averages, and other variables, but we will restrict our
attention to just these.

A set of alternative coarse-grained histories can be con-
structed by giving ranges of these quasiclassical variables
at a sequence of times. We will call these a set of quasi-
classical histories. To be a quasiclassical realm, such a set
must decohere and the probabilities must be high for the
correlations in time specified by a closed set of determin-
istic equations of motion. In Section C we will review the
construction of these sets of histories, their decoherence,
and their probabilities, referring to the work of Halliwell
[19–21]. But here we anticipate the qualitative reasons
for these results.

Typical realistic mechanisms of decoherence involve
the dissipation of phases (between the branch state vec-
tors) into variables that are not followed by the coarse
graining. That is the case, for instance, with the many
models in which the position of one particle is followed
while it is coupled to a bath of others whose positions are
ignored for all time[5, 17, 22, 23]. Quasiclassical coarse
grainings do not posit one set of variables that are ig-
nored (integrated over) for all time, constituting a fixed
‘environment’. Rather, at each time, the projection op-
erators of the coarse graining define the ignored interior
configurations of the volumes whose overall energy, mo-
mentum, and number are followed.9

The coupling between followed and ignored variables
that is necessary for decoherence is inevitably a source of
noise for the followed quantities, causing deviations from

9 As shown in [24], for any coarse graining of the form (2.5) it
is possible to factor an infinite-dimensional Hilbert space into
a part that is followed by the coarse graining and a part that
is ignored (an environment.) However, that factorization may
change from one time to the next, making it difficult to use. The
linear oscillator chain studied in [24] provides another example
of decoherence brought about by a coupling of followed variables
to internal ones.
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predictability. The approximate conservation of quasi-
classical variables allows them to resist the noise that
typical mechanisms of decoherence produce and to re-
main approximately predictable because typically the in-
ertia of each relevant degree of freedom is large [5, 9].

Indeed, consider the limit where there is only one vol-
ume occupying the whole box. Then the quasiclassical
variables are the total energy, total momentum, and to-
tal number of particles in the box. These are exactly
conserved and mutually commuting. Histories of these
quantities are therefore precisely correlated with the fi-
nal values and trivially decohere in the sense discussed
in Section III and Appendix A. Exact decoherence and
persistence in the limit of one volume suggest efficient
approximate decoherence for smaller volumes.

Decoherence, however, is not the only requirement for
a quasiclassical realm. A quasiclassical realm must also
exhibit the correlations in time implied by a closed set of
classical equations of motion. It is to this property that
we now turn.

B. Classical Equations for Expected Values

Isolated systems generally evolve toward equilibrium.
That is a consequence of statistics. But conserved or ap-
proximately conserved quantities such as energy, momen-
tum, and number approach equilibrium more slowly than
others. That means that a situation of local equilibrium
will generally be reached before complete equilibrium is
established, if it ever is. This local equilibrium is charac-
terized by the values of conserved quantities constained
in small volumes. Even for systems of modest size, time
scales for small volumes to relax to local equilibrium can
be very, very much shorter than the time scale for reach-
ing complete equilibrium10 Once local equilibrium is es-
tablished, the subsequent evolution of the approximately
conserved quantities can be described by closed sets of ef-
fective classical equations of motion such as the Navier-
Stokes equation. The local equilibrium determines the
values of the phenomenological quantities such as pres-
sure and viscosity that enter into these equations and the
relations among them. This section reviews the standard
derivation of these equations of motion for the expected
values of the approximately conserved quantities for our
model universe in a box, as can be found for example in
[25, 26]. The next section considers the histories of these

10 In realistic situations there will generally be a hierarchy of time
scales in which different kinds of equilibrium are reached on dif-
ferent distance scales. Star clusters provide a simple example.
The local equilibrium of the kind described here is reached much
more quickly for the matter inside the stars than the metastable
equilibrium governed by weak, long range gravitation that may
eventually characterize the cluster as a whole. By restricting
our model to short-range forces we have avoided such realistic
complications.

quantities, their decoherence, and their probabilities.
Central to the description of local equilibrium is the

idea of an effective density matrix. For large systems
the computation of the decoherence functional directly
from the quantum state ρ ≡ |Ψ〉〈Ψ| may be practically
impossible. However, it may happen for certain classes of
coarse grainings that the decoherence functional is given
to a good approximation by an effective density matrix ρ̃
that requires less information to specify than ρ does (cf
Section VI). That is,

D(α, β) ≡ Tr(CαρC†
β) ≈ Tr(Cαρ̃C†

β) (5.2)

for all histories α and β in an exhaustive set of alternative
coarse-grained histories11.

A familiar example of an effective density matrix is the
one describing a system in a box in thermal equilibrium

ρ̃eq = Z−1 exp[−β(H − ~U · ~P − µN)] . (5.3)

Here, H , ~P , and N are the operators for total energy,
total momentum, and total conserved number inside the
box — all extensive quantities. The c-number intensive

quantities β, ~U , and µ are respectively the inverse tem-
perature (in units where Boltzmann’s constant is 1), the
velocity of the box, and the chemical potential. A nor-
malizing factor Z ensures Tr(ρ̃eq) = 1. In the next sec-
tion, we will give a standard derivation of this effective
density matrix as one that maximizes the missing infor-
mation subject to expected value constraints.

Local equilibrium is achieved when the decoherence
functional for sets of histories of quasiclassical variables
(ǫ, ~π, n) is given approximately by the local version of the
equilibrium density matrix (5.3)

ρ̃leq =Z−1 exp
[

−

∫

d3xβ(~x, t)
(

ǫ(~x, t)

− ~u(~x, t) · ~π (~x, t) − µ (~x, t) ν (~x, t)
)

]

. (5.4)

This local equilibrium density matrix is constructed to
reproduce the expected values of the quasiclassical vari-
ables such as the energy density averaged over a volume
at a moment of time ǫV (~y, t), viz.

〈ǫV (~y, t)〉 ≡ Tr(ǫV (~y, t)ρ) = Tr(ǫV (~y, t)ρ̃leq) (5.5)

and similarly for ~πV (~y, t) and νV (~y, t). The expected val-
ues of quasiclassical quantitites are thus functions of the
intensive c-number quantities β(~x, t), ~u(~x, t), and µ(~x, t).
These are the local inverse temperature, velocity, and
chemical potential respectively. They now vary with time
as the system evolves toward complete equilibrium. In

11 The ≈ in the (5.2) means that deviations from effective behavior
are negligible. This is a different approximation from that in
(2.11), where it is the off-diagonal elements of the decoherence
functional that are negligible.
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the next section, we will give a standard derivation of
the local equilibrium density matrix as one that maxi-
mizes the missing information subject to expected value
constraints of local quantities as in (5.5).

When there is not too much danger of confusion we
will often replace sums over ǫV (~y, t) with integrals over
ǫ(~x, t) and similarly with the other quasiclassical quan-
tities ~π and ν. In particular, the differential equations
of motion that we discuss below are a familiar kind of
approximation to a set of difference equations.

A closed set of deterministic equations of motion for
the expected values of ǫ(~x, t), ~π(x, t), and ν(~x, t) follows
from assuming that ρ̃leq is an effective density matrix for
computing them. To see this, begin with the Heisen-
berg equations for the conservation of the stress-energy-
momentum operator T αβ(~x, t) and the number current
jα(~x, t).

∂T αβ

∂xβ
= 0 ,

∂jα

∂xα
= 0 . (5.6)

Noting that ǫ(~x, t) = T tt(~x, t) and πi(~x, t) = T ti(~x, t), eqs
(5.6) can be written out in a 3+1 form and their expected
values taken. The result is the set of five equations

∂〈πi〉

∂t
= −

∂〈T ij〉

∂xj
, (5.7a)

∂〈ǫ〉

∂t
= −~∇ · 〈~π〉 , (5.7b)

∂〈ν〉

∂t
= −~∇ · 〈~〉 . (5.7c)

The expected values are all functions of ~x and t..
To see how these conservation laws lead to a closed sys-

tem of equations of motion, consider the right hand sides,
for instance that of (5.7a). From the form of ρ̃leq in (5.4)
we find that the stress tensor 〈T ij(~x, t)〉 is a function of
~x and t, and a functional of the intensive multiplier func-

tions β(~ξ, τ), ~u(~ξ, τ), and µ(~ξ, τ). We write this relation
as

〈T ij(~x, t)〉 = Ť ij [β(~ξ, τ) , u(~ξ, τ) , µ(~ξ, τ) ; ~x, t) . (5.8)

In the same way, the expected values of ǫ(~x, t), ~π(x, t),

and ν(~x, t) become functionals of β(~ξ, τ), ~u(~ξ, τ), and

µ(~ξ, τ), e.g.

〈ǫ(~x, t)〉 = ǫ̌[β(~ξ, τ) , ~u(~ξ, τ) , µ(~ξ, τ) ; ~x, t) . (5.9)

Inverting the five relations like (5.9) and substituting in
the expressions for the right hand side like (5.8), we get

〈T ij(~x, t)〉 = Ť ij [〈ǫ(~ξ, τ)〉 , 〈~u(~ξ, τ)〉 , 〈ν(~ξ, τ)〉 ; ~x, t) .
(5.10)

Thus, the set of equations (5.7) can be turned into a
closed set of deterministic equations of motion for the
expected values of the quasiclassical variables 〈ǫ(~x, t)〉,
〈~π(~x, t)〉, and 〈ν(~x, t)〉.

The process of expression and inversion adumbrated
above could be difficult to carry out in practice. The fa-
miliar classical equations of motion arise from further
approximations, in particular from assuming that the
gradients of all quantities are small. For example, for
a non-relativistic fluid of particles of mass m, the most
general Galilean-invariant form of the stress tensor that
is linear in the gradients of the fluid velocity ~u(x)has the
approximate form [27]

Ť ij =pδij + mν uiuj − η

[

∂ui

∂xj
+

∂uj

∂xi
−

2

3
δij

(

~∇ · ~u
)

]

− ζ δij

(

~∇ · ~u
)

. (5.11)

The pressure p and coefficients of viscosity η and ζ are
themselves functions say of β and ν determined by the
construction leading to (5.10). This form of the stress
tensor in (5.7a) leads to the Navier-Stokes equation.

C. Quasiclassical Histories

A quantum system can be said to behave quasiclassi-
cally when, in a suitable realm, the probability is high
for its quasiclassical variables to be correlated in time
by approximate, deterministic classical laws of motion.
For instance, according to quantum mechanics there is a
probability for the earth to move on any orbit around the
sun. The earth moves classically when the probability is
high that histories of suitably coarse-grained positions
of the earth’s center of mass are correlated by Newton’s
laws of motion. The probabilities defining these correla-
tions are probabilities of time histories of coarse-grained
center of mass positions of the earth. The behavior of
the expected values of position as a function of time is
not enough to evaluate these probabilities. Similarly the
classical behavior of the expected values of quasiclassi-
cal hydrodynamic variables derived in the last subsec-
tion does not necessarily imply either the decoherence or
the classicality of these variables except in very special
situations.

One example of such a special situation for the motion
of a non-relativistic particle in one dimension starts from
Ehrenfest’s theorem:

m
d2〈x〉

dt2
= −

〈

dV (x)

dx

〉

. (5.12)

If the initial state is a narrow wave packet that does not
spread very much over the time of interest this becomes
approximately

m
d2〈x〉

dt2
≈ −

dV (〈x〉)

d〈x〉
. (5.13)

This is a classical equation of motion for the expected
value 〈x〉 not dissimilar in character from those for qua-
siclassical variables in the previous subsection.
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Suppose we study the history of the particle using a
set of histories coarse-grained by ranges of x at a se-
quence of times with the ranges all large compared to the
width of the initial wave packet. Then, the only history
with a non-negligible amplitude consists of the ranges
traced out by the center of the wave packet along 〈x(t)〉.
Decoherence of this set is immediate since only the one
coarse-grained history tracking 〈x(t)〉 has any significant
amplitude. And, since that history is correlated in time
by (5.13), the probablity for classical correlations in time
is near unity.

In this example the initial state is very special. Also,
the coarse graining is very coarse — too coarse for in-
stance to exhibit any quantum corrections to classical
behavior.

In several interesting papers [19, 21] J. Halliwell has
provided a demonstration of the classical behavior of
quasiclassical hydrodynamic variables. This has some-
thing of the character of the Ehrenfest example although
it is more technically complex and less special and cor-
respondingly provides more insight into the problem of
classicality.

A very brief summary of his assumptions and results
are as follows:

• Consider a system of N non-relativistic parti-
cles in a box with a Hamiltonian H specified by
two-body potentials with a characteristic range
L. Consider an initial state |Ψ〉 that is an ap-
proximate eigenstate of the quasiclassical variables
(ǫV (~y, t), ~πV (~y, t), νV (~y, t)). (This can be achieved
approximately even though these variables do not
commute.) The volume V is chosen so that i)
〈νV (y)〉 is large, and ii) V >> L3.

• Define a set of quasiclassical histories of the type
discussed in Section IIIA, using ranges of the
(ǫV (~y, t), ~πV (~y, t), νV (~y, t)) at a sequence of times.
Under the above assumptions it is possible to show
that the fluctuations in any of the quasiclassical
quantities are small and remain small, for instance

〈[∆νV (~y, t)]2〉/〈νV (~y, t)〉2 << 1 . (5.14)

The approximate conservation underlying the qua-
siclassical quantities ensures that the relations like
(5.14) hold over time.

• As a consequence Halliwell shows that histories of
the quasiclassical variables are approximately de-
coherent and that their probabilities are peaked
about the evolution given by the classical equations
of motion for the expected values. The crucial rea-
son is that the small fluctuation relations like (5.14)
mean that there is essentially only one history in
each set, somewhat as in the Ehrenfest example.

Halliwell’s result is the best we have today. But in
our opinion there is still much further work to be done
in demonstrating the quasiclassical behavior of histories

of quasiclassical variables. In particular, as mentioned
earlier, quasiclassical realms that are maximally refined
consistent with decoherence and classicality are of inter-
est. The coarse graining in the above analysis is likely to
be much coarser than that.

The contrast with the studies of classicality in the
much simpler oscillator models (e.g [5, 21, 24]) is instruc-
tive. (The reader not familiar with this work should skip
this paragraph.) On the negative side these models do
not deal with the quasiclassical variables under discus-
sion here but rather with with positions of particles or
averages of these. Consequently they assume an arbi-
trary system/environment split. However, on the posi-
tive side it is possible to study various levels of refinement
of the coarse graining, to provide quantitative estimates
for such quantities as the decoherence time, and to ex-
hibit the effects of quantum noise on classical behavior.
We express the hope that it will someday be possible to
achieve similar levels of precision with the more realistic
quasiclassical realms.

VI. INFORMATION AND ENTROPY

Information must be sacrificed through coarse graining
to allow the existence of probabilities for non-trivial sets
of histories. Further coarse graining is needed to achieve
sets of histories that exhibit predictable regularities such
as those of the quasiclassical realms. These are two mes-
sages from the previous sections. Quantitative measures
of the missing information are supplied by various candi-
dates for entropy that can be constructed in connection
with realms11. This section focuses on one measure of
missing information and its connection with the usual
entropy of chemistry and physics.

We review the general prescription for constructing en-
tropies from coarse grainings. When information is miss-
ing about the state of a quantum system, that system
can be described by a density matrix ρ. The natural and
usual measure of the missing information is the entropy
of ρ defined as

S(ρ) = −Tr(ρ log ρ) . (6.1)

This is zero when ρ is a pure state, ρ = |Ψ〉〈Ψ|, showing
that a pure state is a complete description of a quan-
tum system. For a Hilbert space of finite dimension N ,
complete ignorance is expressed by ρ = I/T r(I). The
maximum value of the missing information is logN .

A coarse-grained description of a quantum system gen-
erally consists of specifying the expected values of certain
operators Am, (m = 1, · · · , M) in the “mixed” state ρ.
That is, the system is described by specifying

〈Am〉 ≡ Tr(Amρ) , (m = 1 , · · · , M) . (6.2)

11 For discussion and comparison of some of these measures see
[2, 28].
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For example, the {Am} might be an exhaustive set of
orthogonal projection operators {Pα} of the kind used in
Section II to describe yes/no alternatives at one moment
of time. These projections might be onto ranges of the
center-of-mass position of the planet Mars. In a finer-
grained quasiclassical description, of the kind discussed
in Section V, they might be projections onto ranges of
values of the densities of energy, momentum, and other
conserved or nearly conserved quantities averaged over
small volumes in the interior of Mars. In a coarse grain-
ing of that, the {Am} might be the operators ǫV (~y, t),
~πV (~y, t), and νV (~y, t) themselves, so that the description
at one time is in terms of the expected values of variables
rather than expected values of projections onto ranges of
values of those variables. As these examples illustrate,
the {Am} are not necessarily mutually commuting.

The measure of missing information in descriptions of
the form (6.2) for a quantum system with density ma-
trix ρ is the maximum entropy over the effective density
matrices ρ̃ that are consistent with the coarse-grained
description (e.g. [29–31]). Specifically,

S({Am}, ρ) ≡ −Tr(ρ̃ log ρ̃) , (6.3)

where ρ̃ maximizes this quantity subject to the con-
straints

Tr(Amρ̃) = 〈Am〉 ≡ Tr(Amρ), m = 1, · · · , M . (6.4)

The solution to this maximum problem is straightforward
to obtain by the method of Lagrange multipliers and is

ρ̃ = Z−1 exp

(

−
M
∑

m=1

λmAm

)

. (6.5)

Here, the {λm} are c-number Lagrange multipliers de-
termined in terms of ρ and Am by the coarse graining
constraints (6.4); Z ensures normalization. The missing
information is then the entropy

S({Am}, ρ) = −Tr (ρ̃ log ρ̃) . (6.6)

As mentioned earlier the A’s need not be commuting for
this construction. What is important is that the con-
straints (6.4) are linear in ρ.

Suppose that a coarser-grained description is charac-
terized by operators {Ām}, m = 1, · · · , M < M such
that

Ām =
∑

mǫm

cm̄mAm , (6.7)

where the cm̄m are coefficients relating the operators of
the finer graining to those of the coarser graining. For
example, suppose that the Am are averages over volumes
V (~y) of one of the quasiclassical variables. Averaging
over bigger volumes V̄ (~z) that are unions of these would
be a coarser-grained description. The coefficients cm̄m

would become c(~z, ~y) ≡ V (~y)/V̄ (~z). Then, we obtain

S({Ām}, ρ) ≥ S({Am}, ρ) , (6.8)

since there are fewer constraints to apply in the
maximum-missing-information construction. Entropy in-
creases with further coarse graining.

Among the various possible operators {Am} that could
be constructed from those defining histories of the qua-
siclassical realm, which should we choose to find a con-
nection (if any), with the usual entropy of chemistry and
physics? Familiar thermodynamics provides some clues.
The first law of thermodynamics connects changes in the
expected values of energy over time with changes in vol-
ume and changes in entropy. This suggests that for our
present purpose we should consider an entropy defined
at one time rather than for a history. It also suggests
that we should consider the entropy defined by the ex-
pected values of quasiclassical quantities and not use the
finer-grained description by ranges of values of the the
quantities themselves, which enter naturally into histo-
ries.

To see that this is on the right track, let us compute
the missing information specifying the expected values of

the total energy H , total momentum ~P , and total con-
served number N for our model system in a box. The
density matrix maximizing the missing information is12,
from (6.5)

ρ̃max = Z−1 exp[−β (H − ~U · ~P − µN)] . (6.9)

This is the equilibrium density matrix (6.3). The entropy
S defined by (6.6) is straightforwardly calculated from
the (Helmholtz) free energy F defined by

Tr{exp[−β (H − ~U · ~P − µN)]}

≡ exp[−β(F − ~U · 〈~P 〉 − µ〈N〉)] . (6.10)

We find

S = β(〈H〉 − F ) . (6.11)

This standard thermodynamic relation shows that we
have recovered the standard entropy of chemistry and
physics.

In an analogous way, the missing information can
be calculated for a coarse graining in which 〈ǫ(~x, t)〉,
〈~π(~x, t)〉, and 〈ν(~x, t)〉 are specified at one moment of
time. The density matrix that maximizes the missing in-
formation according to (6.3) is that for the assumed local
equilibrium (5.4). The entropy is

S =

∫

d3xβ (~x, t) [〈ǫ(~x, t)〉 − 〈φ(~x, t)〉] , (6.12)

where 〈φ(~x, t)〉 is the free energy density defined analo-
gously to (6.10). The integrand of (6.12) is then naturally
understood as the entropy density σ(~x, t).

12 Note that in (6.9) H means the Hamiltonian, not the enthalpy,
and 〈H〉 is the same as what is often denoted by U in thermo-
dynamics.
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In these ways the usual entropy of chemistry and
physics arises naturally from the coarse graining that
is inescapable for quantum-mechanical decoherence and
for quasiclassical predictability of histories, together with
the assumption of local equilibrium13.

VII. THE SECOND LAW OF
THERMODYNAMICS

We can now discuss the time evolution in our universe
of the entropy described in the previous section by the
coarse graining defining a quasiclassical realm. The con-
text of this discussion continues to be our model universe
of fields in a box. For the sake of simplicity, we are there-
fore not only treating an artificial universe in a box but
also sidestepping vital issues such as the accelerated ex-
pansion of the universe, possible eternal inflation, the
decay of the proton, the evaporation of black holes, long
range forces, gravitational clumping, etc. etc. (See, for
example [32–34].)

For this discussion we will distinguish two connected
but different features of the universe:

• The tendency of the total entropy of the universe
to increase.

• The tendency of the entropy of each presently al-
most isolated system to increase in the same direc-
tion of time. This might be called the homogeneity
of the thermodynamic arrow of time.

Evidently these features are connected. The first follows
from the second, but only in the late universe when al-
most isolated systems are actually present. In the early
universe we have only the first. Together they may be
called the second law of thermodynamics.

More particularly, isolated systems described by qua-
siclassical coarse grainings based on approximately con-
served quantities can be expected to evolve toward equi-
librium characterized by the total values of these con-
served quantities. In our model universe in a box, the
probabilities of ǫV (~y, t), ~πV (~y, t), νV (~y, t), and their cor-
relations are eventually given by the equilibrium density
matrix (5.3). The conditions that determine the equi-
librium density matrix are sums of the conditions that
determine the local equilibrium density matrix in the
Jaynes construction (6.4). The smaller number of condi-
tions means that the equilibrium entropy will be larger
than that for any local equilibrium [cf. (6.8)].

Two conditions are necessary for our universe to ex-
hibit a general increase in total entropy defined by qua-
siclassical variables:

13 In some circumstances (for example when we take gravitation
into account in metastable configurations of matter) there may
be other kinds of entropy that are appropriate such as q-entropy
with q 6= 1. Such circumstances have been excluded from our
model for simplicity, but for more on them see e.g [41]

• The quantum state |Ψ〉 is such that the initial en-
tropy is near the minimum it could have for the
coarse graining defining it. It then has essentially
nowhere to go but up.

• The relaxation time to equilibrium is long com-
pared to the present age of the universe so that
the general tendency of its entropy to increase will
dominate its evolution.

In our simple model we have neglected gravitation for
simplicity, but for the following discussion we restore it.
Gravity is essential to realizing the first of these condi-
tions because in a self-gravitating system gravitational
clumping increases entropy. The early universe is ap-
proximately homogeneous, implying that the entropy has
much more room to increase through the gravitational
growth of fluctuations. In a loose sense, as far as grav-
ity is concerned, the entropy of the early universe is low
for the coarse graining we have been discussing. The en-
tropy then increases. Note that a smaller effect in the
opposite direction is connected with the thermodynamic
equilibrium of the matter and radiation in the very early
universe. See [35] for an entropy audit of the present
universe.

Coarse graining by approximately conserved quasiclas-
sical variables helps with the second of the two conditions
above — relaxation time short compared to present age.
Small volumes come to local equilibrium quickly. But the
approximate conservation ensures that the whole system
will approach equilibrium slowly, whether or not such
equilibrium is actually attained. Again gravity is impor-
tant because its effects concentrate a significant fraction
of the matter into almost isolated systems such as stars
and galactic halos, which strongly interact with one other
only infrequently14.

Early in the universe there were no almost isolated sys-
tems. They arose later from the condensation of initial
fluctuations by the action of gravitational attraction15.
They are mostly evolving toward putative equilibrium in
the same direction of time. Evidently this homogeneity
of the thermodynamic arrow of time cannot follow from
the approximately time-reversible dynamics and statis-
tics alone. Rather the explanation is that the progeni-
tors of today’s nearly isolated systems were all far from
equilibrium a long time ago and have been running down
hill ever since. This provides a stronger constraint on
the initial state than merely having low total entropy. As
Boltzmann put it over a century ago: “The second law of
thermodynamics can be proved from the [time-reversible]
mechanical theory, if one assumes that the present state

14 For thoughts on what happens in the very long term in an ex-
panding universe see [36, 37].

15 Much later certain IGUSes create isolated systems in the labo-
ratory which typically inherit the thermodynamic arrow of the
IGUS and apparatus that prepared them.
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of the universe. . . started to evolve from an improbable
[i.e. special] state” [38].

The initial quantum state of our universe must be such
that it leads to the decoherence of sets of quasiclassical
histories, most probably by shortly after the Planck time
but certainly by the time of nucleosynthesis of the lightest
elements. In addition, the initial state must be such that
the entropy of quasiclassical coarse graining is low in the
beginning and also be such that the entropy of presently
isolated systems was also low. Then the universe can ex-
hibit both aspects of the second law of thermodynamics.

The quasiclassical coarse grainings are therefore dis-
tinguished from others, not only because they exhibit
predictable regularities of the universe governed by ap-
proximate deterministic equations of motion, but also be-
cause they are characterized by a sufficiently low entropy
in the beginning and a slow evolution towards equilib-
rium, which makes those regularities exploitable.

This confluence of features suggests the possibility of
a connection between the dynamics of the universe and
its initial condition. The ‘no-boundary’ proposal for the
initial quantum state [39] is an example of just such a
connection. According to it, the initial state is com-
putable from the Euclidean action, in a way similar to
the way the ground state of a system in flat space can be
calculated.

VIII. CONCLUSIONS AND COMMENTS

Many of the conclusions of this paper can be found
among the bullets in the Introduction. Rather than re-
iterating all of them here, we prefer to discuss in this
section some broader issues. These concern the relation
between our approach to quantum mechanics, based on
coarse-grained decoherent histories of a closed system,
and the approximate quantum mechanics of measured
subsystems, as in the “Copenhagen interpretation.” The
latter formulation postulates (implicitly for most authors
or explicitly in the case of Landau and Lifshitz [40]) a
classical world and a quantum world, with a movable
boundary between the two. Observers and their measur-
ing apparatus make use of the classical world, so that the
results of a “measurement” are ultimately expressed in
one or more “c-numbers”.

We have emphasized that this widely taught interpre-
tation, although successful, cannot be the fundamental
one because it seems to require a physicist outside the
system making measurements (often repeated ones) of
it. That would seem to rule out any application to the
universe, so that quantum cosmology would be excluded.
Also billions of years went by with no physicist in the
offing. Are we to believe that quantum mechanics did
not apply to those times?

In this discussion, we will concentrate on how the
Copenhagen approach fits in with ours as a set of spe-
cial cases and how the “classical world” can be replaced
by a quasiclassical realm. Such a realm is not postulated

but rather is explained as an emergent feature of the uni-
verse characterized by H , |Ψ〉, and the enormously long
sequences of accidents (outcomes of chance events) that
constitute the coarse-grained decoherent histories. The
material in the preceding sections can be regarded as a
discussion of how quasiclassical realms emerge.

We say that a ‘measurement situation’ exists if some
variables (including such quantum-mechanical variables
as electron spin) come into high correlation with a quasi-
classical realm. In this connection we have often referred
to fission tracks in mica. Fissionable impurities can un-
dergo radioactive decay and produce fission tracks with
randomly distributed definite directions. The tracks are
there irrespective of the presence of an “observer”. It
makes no difference if a physicist or other human or a
chinchilla or a cockroach looks at the tracks. Decoherence
of the alternative tracks induced by interaction with the
other variables in the universe is what allows the tracks
to exist independent of “observation” by an “observer”.
All those other variables are effectively doing the “ob-
serving”. The same is true of the successive positions of
the moon in its orbit not depending on the presence of
“observers” and for density fluctuations in the early uni-
verse existing when there were no observers around to
measure them.

The idea of “collapse of the wave function” corresponds
to the notion of variables coming into high correlation
with a quasiclassical realm, with its decoherent histo-
ries that give true probabilities. The relevant histories
are defined only through the projections that occur in
the expressions for these probabilities [cf (2.7)]. Without
projections, there are no questions and no probabilities.
In many cases conditional probabilities are of interest.
The collapse of the probabilities that occurs in their con-
struction is no different from the collapse that occurs
at a horse race when a particular horse wins and future
probabilities for further races conditioned on that event
become relevant.

The so-called “second law of evolution”, in which a
state is ‘reduced’ by the action of a projection, and the
probabilities renormalized to give ones conditioned on
that projection, is thus not some mysterious feature of
the measurement process. Rather it is a natural conse-
quence of the quantum mechanics of decoherent histories,
dealing with alternatives much more general than mere
measurement outcomes.

There is thus no actual conflict between the Copen-
hagen formulation of quantum theory and the more gen-
eral quantum mechanics of closed systems. Copenhagen
quantum theory is an approximation to the more general
theory that is appropriate for the special case of measure-
ment situations. Decoherent histories quantum mechan-
ics is rather a generalization of the usual approximate
quantum mechanics of measured subsystems.

In our opinion decoherent histories quantum theory
advances our understanding in the following ways among
many others:

• Decoherent histories quantum mechanics extends
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the domain of applicability of quantum theory to
histories of features of the universe irrespective of
whether they are receiving attention of observers
and in particular to histories describing the evolu-
tion of the universe in cosmology.

• The place of classical physics in a quantum universe
is correctly understood as a property of a particu-
lar class of sets of decoherent coarse-grained alter-
native histories — the quasiclassical realms [5, 9].
In particular, the limits of a quasiclassical descrip-
tion can be explored. Dechoherence may fail if the
graining is too fine. Predictability is limited by
quantum noise and by the major branchings that
arise from the amplification of quantum phenomena
as in a measurement situation. Finally, we cannot
expect a quasiclassical description of the universe
in its earliest moments where the very geometry of
spacetime may be undergoing large quantum fluc-
tuations.

• Decoherent histories quantum mechanics provides
new connections such as the relation (which has
been the subject of this paper) between the coarse
graining characterizing quasiclassical realms and
the coarse graining characterizing the usual ther-
modynamic entropy of chemistry and physics.

• Decoherent histories quantum theory helps with
understanding the Copenhagen approximation.
For example, measurement was characterized as an
“irreversible act of amplification”, “the creation of
a record”, or as “a connection with macroscopic
variables”. But these were inevitably imprecise
ideas. How much did the entropy have to increase,
how long did the record have to last, what exactly
was meant by “macroscopic”? Making these ideas
precise was a central problem for a theory in which
measurement is fundamental. But it is less central
in a theory where measurements are just special,
approximate situations among many others. Then
characterizations such as those above are not false,
but true in an approximation that need not be ex-
actly defined.

• Irreversibility clearly plays an important role in sci-
ence as illustrated here by the two famous applica-
tions to quantum-mechanical measurement situa-
tions and to thermodynamics. It is not an absolute
concept but context-dependent like so much else in
quantum mechanics and statistical mechanics. It is
hightly dependent on coarse graining, as in the case
of the document shredding [7], which was typically
carried out in one dimension until the seizure by
Iranian “students” of the U.S. Embassy in Tehran
in 1979, when classified documents were put to-
gether and published. Very soon, in many parts of
the world, there was a switch to two-dimensional
shredding, which appears to be secure today. It

would now be labeled as irreversible just as the one-
dimensional one was previously. The shredding and
mixing of shreds clearly increased the entropy of the
documents, in both cases by an amount dependent
on the coarse grainings involved. Irreversibility is
evidently not absolute but dependent on the effort
or cost involved in reversal.

.
The founders of quantum mechanics were right in

pointing out that something external to the framework
of wave function and Schrödinger equation is needed to
interpret the theory. But it is not a postulated classi-
cal world to which quantum mechanics does not apply.
Rather it is the initial condition of the universe that,
together with the action function of the elementary par-
ticles and the throws of quantum dice since the begin-
ning, explains the origin of quasiclassical realm(s) within
quantum theory itself.

APPENDIX A: TRIVIAL DECOHERENCE OF
PERFECTLY FINE-GRAINED SETS OF

HISTORIES

A set of perfectly fine-grained histories trivially deco-
heres when there is a different final projection for each
history with a non-zero branch state vector. Equiva-
lently, we could say that a set of completely fine-grained
histories is trivial if each final projection has only one
possible prior history. The orthogonality of the final
alternatives then automatically guarantees the decoher-
ence of the realm. Such sets are trivial in the sense that
what happens at the last moment is uniquely correlated
with the alternatives at all previous moments. This ap-
pendix completes the demonstration, adumbrated in Sec-
tion III.A, that completely fine-grained realms are trivial.

The domain of discussion was described in Section
III.A. We consider sets of histories composed of com-
pletely fine-grained alternatives at any one time speci-
fied by a complete basis for Hilbert space. It is sufficient
to consider a sequence of times tk, (k = 1, 2, · · · , n) be-
cause if such decoherent sets are trivial all finer-grained
sets will also be trivial. In Section III.A we denoted the
bases by {|k, ik〉}. Here, in the hope of keeping the no-
tation manageable, we will drop the first label and just
write {|ik〉}. The condition for decoherence (2.8) is then

〈

Ψi′n,··· ,i′
1
|Ψin,··· ,i1

〉

= p(in, · · · , i1) δi′nin
· · · δi′

1
i1 (A.1)

where the branch state vectors |Ψin,··· ,i1〉 are defined by
(2.6) with alternatives at each time of the form (3.1) and
where equality has replaced ≈ because we are insisting
on exact decoherence.

Mathematically, the decoherence condition (A.1) can
be satisfied in several ways. Some of the histories could
be represented by branch state vectors which vanish (zero
histories for short). These have vanishing inner products
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with all branch state vectors including themselves. They
therefore do not affect decoherence and their probabilities
are equal to zero. Further discussion can therefore be
restricted to the non-vanishing branches.

Decoherence in the final alternatives in is automatic
because the projections Pi′n and Pin

are orthogonal if
different. Decoherence is also automatic if each non-zero
history has its own final alternative or, equivalently, if
each final alternative in has a unique prior history. Then
decoherence of the final alternatives guarantees the de-
coherence of the set.

Two simple and trivial examples may help to make
this discussion concrete. Consider the set of completely
fine-grained histories defined by taking the same basis
{|i〉} at each time. The resulting orthogonality of the
projections between times ensures that the only non-zero
histories have in = in−1 = · · · = i2 = i1 in an appropriate
notation. Evidently each in corresponds to exactly one
chain of past alternatives and the decoherence condition
(A.1) is satisfied.

A related trivial example is obtained choosing the
{|ik〉} to be the state |Ψ〉 and some set of orthogonal
states at each of the times t1, · · · , tn−1. That is, we are
mindlessly asking the question, “Is the system in the state
|Ψ〉 or not?” over and over again until the last alterna-
tive. The only non-zero branches are of the form

|in〉〈in|Ψ〉〈Ψ|Ψ〉 · · · 〈Ψ|Ψ〉 = |in〉〈in|Ψ〉 . (A.2)

In this case, each final alternative is correlated with the
same set of previous alternatives. The set decoheres be-
cause the only non-trivial branching is at the last time as
the equality in (A.2) shows. But then each history has a
unique final end alternative and the set is thus trivial16

Trivial sets of completely fine-grained histories have
many zero-histories as in the above examples. To see
this more quantitatively, imagine for a moment that the
dimension of Hilbert space is a very large but finite num-
ber N . A generic, completely fine-grained set with n
times would consist of Nn histories. But there can be at
most N orthogonal branches — no more than are be sup-
plied just by alternatives at one time. Indeed the trivially
decohering completely fine-grained sets described above
have at most N branches. Most of the possible histories
must therefore be zero. Further, assuming that at least
one non-zero branch is added at each time, the number
of times n is limited to N .

Were a final alternative in a completely fine-grained set
to have more than one possible previous non-zero history,
the set would not decohere. To see this, suppose some
particular final alternative kn had two possible, non-zero,

16 Coarse-grained examples of both kinds triviality can be given.
Repeating the same Heisenberg picture sets of projections at all
times is an example of the first. Histories defined by Heisenberg
picture sets of projections onto a subspace containing |Ψ〉 and
other orthogonal ones are examples of the second.

past histories. Let the earliest (and possibly the only)
moment the histories differ be time tj . The condition for
decoherence is [cf. (A.1)]

〈Ψ|i′1〉〈i
′
1|i

′
2〉 · · · 〈i

′
n−1|kn〉〈kn|in−1〉 · · · 〈i2|i1〉〈i1|Ψ〉

= p(kn, · · · , i1) δi′
n−1

in−1
· · · δi′

1
i1 . (A.3)

Sum this over all the i1, · · · , ij−1 and i′1, · · · , i′j−1 to find

〈Ψ|i′j〉M
(

i′j , · · · , i′n−1, kn, in−1, · · · , ij
)

〈ij |Ψ〉

= p(kn, · · · , ij) δi′
n−1

in−1
· · · δi′

j
ij

(A.4)

where we have employed an abbreviated notation for the
product of all the remaining matrix elements. By hy-
pothesis there are at least two chains (ij , · · · , kn) differ-
ing in the value of ij for which M does not vanish and the
history is not zero. But decoherence at time tj then re-
quires that 〈ij |Ψ〉 vanish for all but one ij , contradicting
the assumption that there are two non-zero histories.

The only decohering, perfectly fine-grained sets are
thus trivial.

We now discuss the connection between this notion of
a trivial fine-grained realm and the idea of generalized
records introduced in [3, 10]. Generalized records of a
realm are a set of orthogonal projections {Rα} that are
correlated to a good approximation with the histories of
the realm {Cα} so that

RαCβ |Ψ〉 ≈ δαβCα|Ψ〉 . (A.5)

Generalized records of a particular kind characterize im-
portant physical mechanisms of decoherence. For in-
stance, in the classic example of Joos and Zeh [17] a dust
grain is imagined to be initially in a superposition of two
places deep in intergalactic space. Alternative histories
of coarse-grained positions of the grain are made to de-
cohere by the interactions with the 1011 photons of the
3◦ cosmic background radiation that scatter every sec-
ond. Through the interaction, records of the positions
are created in the photon degrees of freedom, which are
variables not followed by the coarse graining.

But the trivial generalized records that characterize
fine-grained realms are not of this kind. They are in vari-
ables that are followed by the coarse graining. They could
not be in other variables because the histories are fine-
grained and follow everything. They are trivial records
for a trivial kind of realm17.

17 In the general case of medium decoherence, we can construct pro-
jection operators onto orthogonal spaces each of which includes
one of the states Cα|Ψ〉 [10], but again these operators are not
what we are really after in the way of generalized records if they

deal mainly with what is followed.



16

APPENDIX B: NO NON-TRIVIAL CERTAINTY
ARISING FROM THE DYNAMICS PLUS THE

INITIAL CONDITION

The Schrödinger equation is deterministic and the evo-
lution of the state vector is certain. In this appendix we
show that this kind of determinism is the only source of
histories that are certain (probability equal 1), coarse-
grained or not, for a closed quantum-mechanical system.

Suppose we have a set of exactly decoherent histories
of the form (2.4), one member of which has probability
1, i.e. the history is certain. Denote the class operator
for this particular history by C1 and index its particular
alternatives at each time so they are α1 = α2 = · · ·αn =
1. Thus we have

p(1) = ‖C1|Ψ〉‖2 = 1 , p(α) = ‖Cα|Ψ〉‖2 = 0 , α 6= 1 .
(B.1)

The second of these implies Cα|Ψ〉 = 0 for α 6= 1. Given
that ΣαCα = I, the first implies that C1|Ψ〉 = |Ψ〉. In
summary we can write

Cα|Ψ〉 = P 1
αn

(tn) · · ·P 1
α1

(t1)|Ψ〉 = δαn,1δαn−1,1 · · · δα1,1|Ψ〉 .
(B.2)

Summing both sides over this over all α’s except those at
time tk, we get

P k
αk

(tk)|Ψ〉 = δαk,1|Ψ〉 . (B.3)

This means that all projections in a set of histories of

which one is certain are either onto subspaces which con-
tain |Ψ〉 or onto subspaces orthogonal to |Ψ〉 . Effectively
they correspond to questions that ask, “Is the state still
|Ψ〉 or not?”. That is how the certainty of unitary evolu-
tion is represented in the Heisenberg picture, where |Ψ〉
is independent of time.

Note that this argument doesn’t exclude histories
which are essentially certain over big stretches of time as
in histories describing alternative values of a conserved
quantity at many times. Then there would be, in gen-
eral, initial probabilities for the value of the conserved
quantity which then do not change through subsequent
history.
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