АНО «Центр междисциплинарных исследований» (ЦМИ)
Russian
| English
"Куда идет мир? Каково будущее науки? Как "объять необъятное", получая образование - высшее, среднее, начальное? Как преодолеть "пропасть двух культур" - естественнонаучной и гуманитарной? Как создать и вырастить научную школу? Какова структура нашего познания? Как управлять риском? Можно ли с единой точки зрения взглянуть на проблемы математики и экономики, физики и психологии, компьютерных наук и географии, техники и философии?"

«НОВОЕ В СИНЕРГЕТИКЕ. ВЗГЛЯД В ТРЕТЬЕ ТЫСЯЧЕЛЕТИЕ» 

Под редакцией проф. Г.Г.Малинецкого, и член-кор РАН С.П.Курдюмова Издательство «Наука» 2002

Под редакцией проф. Г.Г.Малинецкого, и член-кор РАН С.П.Курдюмова
Издательство «Наука» 2002

Серия, «Информатика; неограниченные возможности и возможные ограничения»

КУПИТЬ СБОРНИК

Куда мы денемся? Никакие достижения прогресса не позволят людям забыть об этой аксиоме: земной шар сможет прокормить не больше 12 миллиардов человек В мире время от времени происходят события, повергающие людей в шок своей неожиданностью. Например, еще за год до развала СССР никому и в голову не мог прийти такой финал великой державы, даже ЦРУ, наверное, на это не надеялось. Или сход ледника в Кармадонском ущелье — событие, вероятность которого в тот момент была ничтожна. Возможность предсказать то или иное событие или ход процесса называется в синергетике горизонтом прогноза, а точность его определяется тем, сколько параметров учитывается при его составлении. Если таких параметров не больше семи, прогноз может быть достаточно точным. Но когда число параметров, определяющих ход процесса, быстро растет, человек не может уследить за ол-туацией. Так что он в техническом отношении сильно проигрывает ЭВМ. Зато берет реванш в интеллектуальном плане, многие задачи решая лучше компьютеров. В том числе предвидит, ‘куда влечет нас рок событий*. То есть наше мышление опирается на иные, ‘некомпьютерные* алгоритмы. Рассказывая об этом, авторы одной из статей С.Курдюмов и Г.Малинецкий используют применяемые в синергетике понятия ‘русла*, ‘джокер*.

Среди многих вопросов, поставленных в книге, есть и такой животрепещущий: не слишком ли много людей живет на Земле и сколько еще *хомо сапиенсов’, постоянно увеличивающих свою численность/ она сможет выдержать? Только за вторую половину XX века население Земли выросло почти в два с половиной раза. Демографический взрыв породил апокалипсические прогнозы о голодной смерти или погребении под кучами мусора. Однако к концу XX века ситуация начала меняться. Ускоряющийся рост сменился замедляющимся с тенденцией к стабилизации численности людей.
Но почему количество живущих на земле человеческих особей увеличивается а не остается в среднем постоянной, как у всех остальных биологических видов? Число людей, живущих на земле, — это разница между родившимися и умершими на данный момент. Увеличивается численность, отмечает автор статьи А.Подлазов, не столько потому, что растет рождаемость, сколько потому, что уменьшается смертность благодаря изобретению все новых жизнесберегающих технологий, спасающих от смерти или продлевающих жизнь. К ним относятся способы хозяйствования, государственное управление, воинское искусство, религиозные доктрины, средства коммуникаций, торговля, медицина и прочие. Если из-за войн, эпидемий, стихийных бедствий и других катаклизмов население o уменьшается, включаются популяци-..онные и социальные’защитные механизмы: растет рождаемость, мобилизуются внутренние ресурсы организма уцелевших особей, усиливается взаимопомощь, снимаются барьеры, ограничивающие рождаемость. В результате status quo восстанавливается в течение всего лишь нескольких поколений.
Напротив, если по каким-то причинам произошло чрезмерное увеличение численности населения, а развитие жизнесберегающих технологий отстает, то для части людей может просто не найтись места в обществе, они окажутся лишними. В самом деле, зачем иметь больше землепашцев, чем необходимо для обработки имеющейся пахотной земли, или больше солдат, чем нужно для защиты от военной угрозы? Как только количество лишних людей превысит некоторый пороговый уровень, возникает кризис, или демографический перегрев. В истории такие случаи уже были, например, в средние века. Лишние люди разными путями выводились из общества: отправляясь на религиозные войны (крестоносцы), переселяясь в колонии (Индию) или на незаселенные земли (Америку). Так продолжается до тех пор, пока избыток людских ресурсов не будет исчерпан. Внутри страны те же самые цели достигаются в ходе смуты, гражданской войны, геноцида. В этом случае обыкновенно ‘выбиваются* и лишние, и нелишние люди, и гораздо больше, чем надо. Поэтому обществу, выгоднее избежать демографического пере*’ грева, нежели потом в течение десятилетий зализывать раны. o Сегодняшний уровень жизнесберегающих технологий может обеспечить жизнь не более десяти миллиардов человек, и то при условии, что средняя предельная продолжительность жизни человека останется такой, как сейчас Когда же люди станут бессмертными, им придется позаботиться о том, чтобы их численность не превышала 12 миллиардов человек. Иначе не помогут технологии и не выдержит природа.
С того дня, когда появился хомо сапиенс и заселил всю планету, жизнесберегающие технологии, имевшиеся у человечества, позволили ему увеличить свою численность на пять порядков. Дальнейший рост не имеет биологического смысла. Однако он отнюдь не прекратился, а, напротив, идет невиданными ранее темпами. В связи с этим современную цивилизацию можно уподобить экспрессу, несущемуся на полных парах вперед, несмотря на то, что рельсы уже кончились. С другой стороны, если перестать совершенствовать тех-
. положи, это чревато стагнацией, что в равной степени гибельно. Таким .образом, человечество столкнулось с жесточайшим в своей истории противоречием, разрешения которому пока нет.
В сборнике речь идет также о математической .психологии и экономике, прогнозе землетрясений, на-нотехнологии, гемодинамике и многом другом. Исследования, лежащие в основе ряда статей, были проведены при помощи РФФИ и РГНФ.

Оглавление

Пролог. Синергетика и системный синтез (С.П. Курдюмов, Г.Г. Малинецкий)

Синергетика и прогноз. Настоящее и будущее (Г.Г. Малинецкий, С.П. Курдюмов)

Исследования и технологии

Динамический хаос как носитель информации (А.С. Дмитриев)

Нанотехнологии, наноматериалы, наноустройства (Г.Г. Еленин)

Явления самоорганизации в турбулентной плазме: диагностика и примеры. (В.Д. Левченко)

Параметры порядка в моделях лазеров с запаздывающей обратной связью (Е.В. Григорьева, С.А. Кащенко)

Восстановление параметров клеточных автоматов и прогноз землетрясений (И.В. Кузнецов)

Стратегии

Динамическая модель поведения общества. Синергетический подход к макроэкономике (Д.С. Чернавский, Н.И. Старков, А.В. Щербаков, В.П. Карп, А.П. Никитин)

Математическое моделирование исторических процессов (С.Ю. Малков)

Модели роста народонаселения и глобального демографического перехода (А.В. Подлазов)

Человек

Нестационарные структуры в модели свертывания крови (А. И. Лобанов, Т. К. Старожилова)

Нелинейная динамика обработки информации в нейронных сетях (А.Б. Потапов, М.К. Али)

Новые модели математической психологии и информационные процессы (Н.А. Митин)

Имманентные проблемы синергетики (Р.Г. Баранцев)



ПРОЛОГ

СИНЕРГЕТИКА И СИСТЕМНЫЙ СИНТЕЗ
С.П. Курдюмов, Г.Г. Малинецкий

Синергетика – это теория самоорганизации в системах различной природы. Она имеет дело с явлениями и процессами, в результате которых у системы – у целого – могут появиться свойства, которыми не обладает ни одна из частей. Поскольку речь идет о выявлении и использовании общих закономерностей в различных областях, то этот подход предполагает междисциплинарность. Последнее означает сотрудничество в разработке синергетики представителей различных научных дисциплин

Громада двинулась и рассекает волны.
Плывет. Куда ж нам плыть?
А.С.Пушкин

Синергетика в контексте культуры

Опыт в развитии междисциплинарных исследований научное сообщество накопило небольшой. Развитие кибернетики имеет только полувековую историю, а возраст синергетики – всего три с небольшим десятилетия.

Поэтому у нас нет возможности, как у умудренных жизнью мэтров, пользоваться оборотами «как всегда», «как это обычно бывает», «помнится раньше» … У нас все впервые. И это гораздо интереснее. Многие черты в развитии синергетики и современной науки в целом выглядят как парадоксальные. Удачное слово «синергетика», родившееся с легкой руки Германа Хакена, в 70-х годах быстро завоевало популярность. Сначала в него вкладывали простой и ясный смысл.

Синергетика – это теория самоорганизации в системах различной природы. Она имеет дело с явлениями и процессами, в результате которых у системы – у целого – могут появиться свойства, которыми не обладает ни одна из частей. Поскольку речь идет о выявлении и использовании общих закономерностей в различных областях, то этот подход предполагает междисциплинарность. Последнее означает сотрудничество в разработке синергетики представителей различных научных дисциплин. Время шло, собирались научные конференции, издавались отличные книги, о которых хочется вспомнить добрым словом [1-8].

Дело дошло до учебников и даже до преподавания синергетики не только в вузах, но и в средних школах. (Блестящий опыт такого рода имеется в Саратовском колледже прикладных наук, существующем под крылом местного университета.) Все примерно так же, как у других наук. Один из авторов этих строк даже сравнивал первые международные конференции по синергетике с Сольвеевскими конгрессами, сыгравшими важную роль на заре квантовой механики. Однако нет, не все так просто. Чтобы убедиться в этом, достаточно перелететь через океан. Например, такие привычные понятия, как «параметры порядка», «диссипативные структуры», «самоорганизация», и многие другие синергетические термины не знакомы большинству местных исследователей, не говоря уже о студентах. Неведомы им и «синергетические классики». Как же они без этого обходятся? Очень просто – они опираются, занимаясь теми же задачами, на другие работы, иногда на иной аппарат и, разумеется, на местных классиков.

Вместо «самоорганизации» говорят о «выходе системы на инерциальное многообразие», вместо «синергетики» – об «идеях теории сложности» и так далее. За этим курьезным фактом стоят не только амбиции ученых (роль «субъективных факторов» в развитии науки трудно переоценить), но и важные особенности синергетики, отличающие ее от «обычной» науки. Почему сравнительно просто научить школьной алгебре, геометрии или физике? Потому что, во-первых, есть небольшой конкретный материал про то, что и как вычислять, строить или измерять в простейших случаях. Во-вторых, есть четко очерченная область, в которой эти правила следует применять, чтобы получать ответы, за которые поставят пятерку, а то и дадут приз на олимпиаде. То же относится и к другим физико-математическим наукам. Синергетика от этой благостной картины отличается в двух отношениях.

  • Во-первых, в ней нет простых и ясных рецептов, что и как надо cчитать. Она, скорее, помогает задавать вопросы, искать системы, которые могут обладать необычными свойствами, выделять общие черты в конкретной задаче. Разумеется, в ней есть и концепции, и понятия, и модели, и аппарат. Но применимы ли они к той проблеме, с которой пришел в синергетику исследователь или которую он собирается поставить, обычно совершенно не ясно. В «хороших науках» дело обстоит не так – если есть задача в задачнике, то точно все должно быть применимо. И дело только в изобретательности и настойчивости применяющего.
  • Во-вторых, междисциплинарность подразумевает два этапа. На первом специалист из какой-то области обращается к идеям и представлениям синергетики. Применяет их к своей проблеме. Это удается очень многим. На втором этапе он возвращается с полученным результатом в свою область и убеждается сам в нетривиальности последнего и демонстрирует ее коллегам. Со вторым этапом справляется гораздо меньшее количество ученых. «Искусству задавать вопросы» научить намного труднее, чем «искусству получать ответы».

Первое в гораздо большей степени зависит от научного и общекультурного контекста, с которым работает ученый. Как говорят филологи и специалисты по машинному переводу, текст обычно содержит лишь 10% информации, 90% определяется контекстом, который мы привносим, воспринимая сообщение.

По-видимому, этот синергетический эффект относится и к научному творчеству. С другой стороны, междисциплинарные подходы очень обогащают тот контекст, в котором работает ученый. Вероятно, поэтому отечественной научной культуре обобщающие идеи синергетики оказались очень близки. Для многих классиков русской и советской науки было характерно стремление увидеть общее в различных дисциплинах и на этой основе получить оригинальные результаты в каждой их них. При этом организация дальнейших исследований, усилия по изменению отношения общества к научным результатам, выращивание учеников, непосредственное участие в государственных делах ценились научным сообществом весьма высоко.

Вспомним М.В. Ломоносова, который занимался и химией, и физикой, и историей, и филологией, который «сам был нашим первым университетом». Дмитрий Иванович Менделеев был не только великим химиком, видным общественным деятелем, много сделавшим для развития промышленности в целом, и нефтехимии в частности, в своем отечестве. Он был блестящим профессором, написавшим основополагающие учебники, демографом, выдающимся экономистом. И свои работы по обоснованию государственной поддержки отечественных предпринимателей – политики протекционизма – сам он оценивал не менее высоко, чем свои исследования по химии. Любопытно, что и в то время «междисциплинарность» опиралась на прочный естественнонаучный фундамент, на использование математики.

В этой связи интересна мысль одного из самых блестящих политиков России – Сергея Юльевича Витте, способствовавшего многократному увеличению протяженности сети железных дорог, осуществившего одну из наиболее удачных денежных реформ, заложившего основы политехнического образования в России и предсказавшего ход исторических процессов на десятилетия вперед. Он, получивший физико-математическое образование, делил всех математиков на «математиков-вычислителей» и «математиков-философов». С.Ю. Витте ценил вторых гораздо выше и полагал, что их мнение, совет и исследования могут быть весьма важны в государственных делах. Широтой интересов отличался и В.И. Вернадский. С одной стороны, он – основатель геохимии и организатор ряда геологических изыскательских работ. С другой, глубокий философ, увидевший в формировании ноосферы надежду для человечества, прозорливо предсказавший огромное будущее атомной энергии на заре XX века.

Президент Академии наук СССР М.В. Келдыш, с именем которого связывают успехи в освоении космоса, в создании ряда систем стратегических вооружений, в нашей стране, пришел в науку как чистый математик. На его научном пути – и работы по теории несамосопряженных операторов, и теория флаттера, давшая ключ к пионерским инженерным решениям, и обоснование научной стратегии сверхдержавы, и мечты о дальнем космосе. Большое влияние на отечественные междисциплинарные исследования в последние десятилетия оказывала деятельность недавно ушедшего от нас академика Н.Н. Моисеева. Его работы по автоматическому управлению, нелинейной механике, анализу экономических механизмов, оптимизации, системам поддержки принятия решений, рефлексивным процессам привели к созданию ярких самобытных научных школ. Последние его работы по экологии, связанные с концепцией устойчивого развития, по философии, где он выдвинул концепцию универсального эволюционизма, по анализу сценариев выхода России из системного кризиса не всегда находили понимание.

Помнится, с какой горечью он рассказывал одному из авторов о своей беседе с высокопоставленным (впрочем, правильнее, наверное, было бы писать в два слова) чиновником. Он предложил развернуть работы по научному обоснованию стратегических транспортных проектов – трансъевразийской магистрали и Северного морского пути. Великий «путь из англичан в японцы», как он говорил, возможен благодаря уникальному евразийскому положению России и ее научно-техническому потенциалу. «Вы – математик. Ну и занимайтесь математикой, а в наши дела не лезьте», – услышал он в ответ на свои предложения. Но времена меняются.

Давно простыл след временщика, беседовавшего с академиком. А многие идеи Н.Н. Моисеева вновь и вновь переосмысливаются или переоткрываются. Но ведь возможно и другое отношение к науке, ей может принадлежать иное место в культуре. В одной из книг Джордж Сорос поставил под сомнение саму концепцию объективной истины. При таком взгляде развитие науки представляется дорогой от одного заблуждения к другому, возможно, более удобному и выгодному в данной конкретной ситуации. Если же появляется еще и «рыночный компонент», возможность с помощью рынка «оценить» ученого, то все еще более упрощается. Небезызвестный герой Джона Голсуорси считал, имея в виду искусство, что любая ерунда, за которую платят деньги, уже не ерунда. Но с такой же меркой можно подойти и к науке. Для такой «рыночной» организации науки большой ценностью оказывается конкретность и узкая специализация, а не широта мышления или целостность восприятия проблемы. Естественно, в таком научном сообществе междисциплинарные подходы не будут слишком популярны. (Впрочем, там есть свои и достаточно большие плюсы.)

Существует широко распространенная иллюзия, что Интернет принципиально изменил стиль научной работы. На первый взгляд, кажется, что иначе и быть не может.

  • Во-первых, стало возможно создание «виртуальных лабораторий», сотрудники которых могут жить на разных материках, но тем не менее работать вместе.
  • Во-вторых, стали широко доступными огромные массивы информации и банки данных.
  • В-третьих, предоставлена возможность сообщать о результатах практически сразу после их получения.
  • В-четвертых, появились телеконференции, где можно вести дискуссии со многими оппонентами и эффективно выявлять недостатки той или иной позиции.

Тем не менее, на наш взгляд, глобальные компьютерные сети изменили науку гораздо меньше, чем торговлю, промышленность, банковское дело, средства массовой информации или индустрию развлечений. Причина этого проста – самым инертным и самым важным звеном в науке является человек. Научный прогресс лимитируется не быстродействием компьютеров или объемом банков данных, а нашей способностью генерировать новые идеи, осмысливать информацию, искать причинно-следственные связи. Более того, во многих отношениях ситуация стала хуже. Огромный поток информации заставляет узко и избирательно просматривать очень малый фрагмент какой-либо области знаний. Не редки ситуации, когда близкие соседи не знают об исследованиях друг друга. Во времена Ньютона и Лейбница, когда не было научных журналов в нынешнем понимании слова, один исследователь слал письма другому.

В нынешней ситуации коллеги, как правило, не представляют себе, в чем суть твоей работы, если ты им лично не послал статью по электронной почте. На новом уровне мы вернулись к прежнему положению вещей. Но ведь искусство невозможно без зрителей, слушателей, читателей, так же как наука – без коллег, без среды, без обсуждения, без критики, без диалога. В нынешней ситуации все это обеспечивают научные семинары, проводимые в институтах или университетах. Неформальное научное сообщество, к которому относят себя авторы настоящего сборника, во многом сложилось благодаря научному семинару по нелинейной динамике в Институте прикладной математики им. М.В. Келдыша РАН. О проблемах, обсуждавшихся на нем, дают представление несколько книг, вышедших в этой серии в «Науке» [9-17] и других издательствах. История показывает, что в переломные моменты развития науки и технологии наблюдались несколько типичных явлений. Первое – неоправданный оптимизм в отношении новшеств и новых научных направлений. Второе – большая роль личных контактов между исследователями.

Гораздо большая, чем в периоды медленного, эволюционного развития. Поэтому и в нынешней отечественной синергетике огромную роль играют регулярно проводимые научные конференции , школы, семинары, другие встречи, позволяющие передавать не только идеи, но и традиции от одних поколений к другим. В качестве «хрестоматийных» примеров можно привести школы для молодых ученых и конференции, проводимые в Саратове под началом ректора Саратовского государственного университета член‑корр. РАН Д.И. Трубецкова и его коллег. Другой пример – ежегодные конференции «Математика, компьютер, образование», проводимые во многом благодаря энергии и самоотверженности профессора кафедры биофизики биофака МГУ, президента ассоциации «Женщины в науке и образовании» Г.Ю. Резниченко. Большое влияние на «нелинейное научное сообщество» оказывают международные конференции «Проблемы управления безопасностью сложных систем», проводимые в Институте проблем управления РАН профессором В.В. Кульбой и его единомышленниками.

В последние 10 лет эти конференции позволили решить еще одну важную задачу – найти место междисциплинарных исследований, увидеть те проблемы, области, «экологические ниши», где такие работы могут быть поняты и востребованы. Не секрет, что значительная часть междисциплинарных исследований за рубежом проводилась и сейчас проводится по заказам государственных структур, формирующих стратегию и политику, по заказам военно-промышленного комплекса, заинтересованного в поиске принципиально новых решений и технологий. В самом деле, исследование операций выросло в основном из задач планирования боевых действий, анализ диссипативных структур – из физики плазмы, теории горения и взрыва, исследования динамического хаоса – из задач прогноза и методик защиты информации. Ведущие военно-промышленные центры становились и лидерами в области нелинейных исследований. Например Центр нелинейных исследований в Лос-Аламосе (США) вырос из лаборатории, занимавшейся ядерным оружием. В Институте прикладной математики им. М.В. Келдыша РАН интенсивное развитие методов нелинейного анализа и их применение опиралось на научный фундамент, заложенный при решении оборонных задач.

Когда этот государственный и военно-промышленный заказ на «нелинейную науку» в нашей стране на длительное время исчез, пришлось всерьез пересматривать тематику, существенно менять акценты. На наш взгляд, это удалось сделать. Это наглядно показывают и статьи, вошедшие в настоящий сборник. Исследователи, как убедится читатель, шли разными путями. Одни сосредоточили внимание на математическом аппарате синергетики, другие увидели высокие технологии, где концепции, методы, идеи синергетики дают новые возможности, третьи связали нелинейную динамику с глобальными проблемами, с управлением, с новыми стратегиями, четвертые ищут место синергетики в гуманитарных областях. И кроме того, нельзя упускать из виду возможность, что сменится поколение руководителей, и вместо того, чтобы ломать и бездумно копировать, новые люди будут строить и искать свои пути в будущее. Тогда, глядишь, и традиционные задачи, связанные с междисциплинарными исследованиями, окажутся востребованными. На конференциях, где рассматривались проблемы искусствоведения или культурологии с позиций синергетики, часто вставал вопрос: к какому стилю, к какому направлению искусства синергетика ближе всего по духу.

Выскажем и наше мнение. Конечно, это не постмодерн с его эклектикой, технологией комбинирования различных фрагментов, коллажем из предшествующих идей, штампов, приемов, образов. Это, скорее, стремление увидеть предмет в его целостности. Синергетика предлагает новое в и дение, новые способы упрощать реальность. Эта «новая простота» помогает не «утонуть» в деталях и порой выглядит достаточно необычно. Например задачи и подходы «синергетической экономики» или «рефлексивной теории управления» кажутся странными и парадоксальными, с точки зрения традиционных подходов. Но именно эти синергетические подходы гораздо ближе к описанию многих явлений в новой реальности – глобальных финансовых кризисов, роста «новой экономики» ( knowledge-based economy , как ее называют наши англоязычные коллеги).

Поэтому, вероятно, нынешнему этапу развития синергетики созвучны образы и мировидение импрессионизма. Здесь и обостренное внимание к целому, к тому, что делает его большим, чем сумма слагающих его частей. Здесь и новое отношение к вечному и преходящему, акцент на переходных, переломных, ускользающих от неспешного наблюдения моментах. Эта новые краски, образы. Поэтому мы и поместили на обложку картину Павла Филонова «Цветы нового рассвета». Из непохожести, уникальности здесь рождается волнующая гармония целого. И главное – это не закат. Это рассвет. Впрочем, ощущение новизны, парадокса, удачи, характерное для О. Ренуара, ряда импрессионистов, типично и для «синергетиков». Авторам этих строк часто приходилось отвечать на вопрос – чем взгляд и подход синергетики отличается «от того, что было раньше». Начнем издалека. Ньютон, Лаплас, классики эпохи Просвещения смотрели на мир «с позиции Господа Бога». Это, с одной стороны, вера в глубину и совершенство замысла Творца и надежда, что простые универсальные законы существуют, познаваемы, а их использование будет исключительно полезным. Это вера в торжество разума, – как бы ни были сложны уравнения, следующие из этих законов, сколько бы их ни было, их удастся решить. Это глобальный детерминизм – уверенность в том, что можно, решив уравнения, заглянуть как угодно далеко в будущее и в прошлое. Времени с тех пор минуло много.

И на новом витке развития науки эти идеи и представления возродились в связи с быстрым ростом возможностей компьютеров. Наверно, некоторые из читателей этой книги помнят, как строились имитационные модели в экономике, в медицине, в биологии, в экологии. Сотни и тысячи уравнений, сотни тысяч параметров, потребных для моделей, не смущали энтузиастов. Многим, видимо, помнятся речи о вычислительном эксперименте. Последний должен был дать огромный импульс развитию науки, позволяя учитывать десятки и сотни эффектов, извлекать из теории следствия, о которых раньше и не мечтали. И, конечно, все это чище, дешевле, точнее и быстрее, чем в обычном эксперименте. Можно упомянуть и бум с автоматизированными системами управления, сулившими огромные перспективы. Энтузиасты этих подходов не видели ни пределов, ни ограничений. Одному из авторов довелось слышать по этому поводу на научном семинаре такой диалог.

  • А есть ли задачи, к которым такой подход неприменим? – спросил потрясенный открывшимися перспективами слушатель.
  • Может быть и есть, но я ни одной такой не знаю, – с гордостью и уверенностью ответствовал докладчик.

Но пределы обнаружились. И довольно быстро. Во-первых, принципиальные, объективные, независимые от человека. В теории динамического хаоса – важной области нелинейной науки – было убедительно показано, что даже для довольно простых детерминированных систем (в которых будущее однозначно определяется настоящим) существует горизонт прогноза [14]. Заглянуть за этот горизонт в общем случае нельзя, какую бы мощную вычислительную технику и какие бы эффективные алгоритмы исследователи ни использовали.

Сейчас теория самоорганизованной критичности – новый фаворит синергетики – показывает, что для многих сложных иерархических систем типичны редкие катастрофические события. Поэтому «настроить» модели – определить необходимые параметры, – опираясь на предысторию, для таких объектов достаточно сложно. И все же, как нам кажется, главным барьером, вставшим на пути многих вдохновляющих проектов, связанных с компьютерным моделированием, стало чисто человеческое ограничение. Это ограничение условно можно назвать «барьером понимания». Оказалось, что наши возможности вычислять, моделировать, управлять, имитировать то, что мы не понимаем, весьма ограниченны. Многие надежды, которые сегодня возлагаются на синергетику, связаны прежде всего с теми задачами, которые лежат вблизи «барьера понимания», с новым взглядом на них.

Системный синтез

Существо дела можно пояснить на примере концептуальной модели, возникшей вначале в совершенно конкретном контексте. Зададим общий вопрос – почему нам что-то удается описывать и предсказывать? В самом деле, человек «с технической точки зрения» сильно проигрывает ЭВМ.

Скорость срабатывания нервных клеток – нейронов – у него в миллион раз меньше, чем у триггеров в персональном компьютере. Информация передается в нервной системе тоже в миллион раз медленнее, чем в вычислительной машине, поскольку связана и с электрическими, и с химическими процессами. Да и «выходные параметры» у человека достаточно скромные. По данным психологов, он может следить не более, чем за семью непрерывно меняющимися во времени величинами, эффективно работать не более, чем с 5-7 людьми. Вместе с тем многие задачи человек решает гораздо лучше компьютеров. Можно только удивляться тому, что понадобилось почти полвека интенсивного развития вычислительной техники, чтобы машины начали уверенно обыгрывать людей в шахматы. Это означает, что наше мышление, восприятие, способность предвидеть опираются на иные, «некомпьютерные» алгоритмы.

В отношении их была высказана следующая гипотеза. Рассмотрим фазовое пространство, в котором лежат переменные, описывающие нашу реальность. Оно очень велико, и принять во внимание все переменные в нем человек не в силах. Но, очевидно, есть ситуации, области в фазовом пространстве, где для того чтобы понимать и предсказывать происходящее, достаточно несколько параметров. Другими словами, иногда существуют проекции на подпространство меньшего числа переменных, которые адекватно отражают происходящее во всем огромном пространстве переменных. Эти подпространства были названы руслами . Размерность русла (то есть число переменных в этой проекции реальности) невелико. Психологи говорят о семи переменных, но наш читатель знает, что вообразить себе нетривиальный четырехмерный объект уже непросто. И если у нас для описания реальности есть подходящее русло, то тут можно строить достаточно простые и эффективные теории, понимать происходящее, просчитывать варианты, находить эффективные поведенческие стратегии.

В синергетике эти наиболее важные переменные, характеризующие русло, называют параметрами порядка . Синергетика решила множество задач, в которых понято, каковы эти параметры для различных физических, химических или биологических систем, как искать связи между этими параметрами, как «на пальцах» пояснить происходящее, не выписывая каких-либо уравнений. Как ищут русла живые системы, как научить этому нейронные сети – это, на наш взгляд, фундаментальная задача нейронауки. (Нейронаукой все чаще называют междисциплинарный подход, родившийся на стыке когнитивной психологии, нейробиологии, вычислительной математики, теории рефлексивного управления, нейрофизиологии, других дисциплин, направленный на выявление механизмов работы мозга, моделирование элементов мышления, объяснение феномена сознания.)

Другими словами, там, где дело касается русел, сложные системы удается описывать просто. И тут синергетика имеет и методы, и подходы, и успехи, и образцы для подражания. Но реальность может быть устроена и более сложно, с чем мы регулярно сталкиваемся. Русло кончается, (определить когда это происходит – отдельная важная задача) и число переменных, которые определяют ход процесса, быстро растет, горизонт прогноза уменьшается, мы не можем «просчитать ситуацию», появляется возможность резких изменений.

Такие области в фазовом пространстве были названы областями джокеров , а сами правила, по которым начинает вести себя система, – джокерами . Название связано с игральной картой – джокером, которая, в зависимости от желания играющего, может стать любой другой картой. Наличие джокера в колоде намного увеличивает неопределенность и усложняет ситуацию.

В задачах, связанных с естественными науками, джокеры могут быть связаны с тем, что в этой области фазового пространства определяющими становятся «быстрые переменные», в то время как русла определялись медленными. Джокер может быть связан с точкой бифуркации, когда малые флуктуации, случайный шум могут определить ход процесса. Области джокера удобно выделять, рассматривая некоторые типы перемежаемости (например «переключательная перемежаемость» on-off intermittency, – для которой С.В. Ершовым была построена замечательная модель в связи с описанием жесткой турбулентности [17]).

Одним словом, в моделях естествознания есть много места для джокеров. При этом нам приходится, как правило, менять тип описания – то прибегать к вероятностному языку, то строить асимптотики, существенно отличающиеся от тех, что характерны для русел, то каким-то способом учитывать влияние других уровней организации материи. Но еще более важны и интересны джокеры в тех ситуациях, когда речь идет об обществе, об истории, экономике, политике или о человеке. В области русла можно опираться на простые детерминированные модели, на несложные закономерности. Те, кто сталкивался с экономикой, помнят, насколько просты модели, построенные большинством Нобелевских лауреатов в этой области.

Тут дело, по-видимому, не в самих моделях, а в тех руслах, к которым они относятся и которые смогли увидеть исследователи. И тут все похоже на «физику» и «технику». Заметьте, как часто политики говорят об «экономических механизмах» и «социальных технологиях». Совершенно иначе приходится описывать реальность в области джокера. Огромное влияние приобретают случайности, игровые моменты, сплошь и рядом становится необходимым вероятностное описание. Выбор в таких случаях сложен, потому что приходится принимать в расчет слишком многое, что оставляет простор для субъективных факторов. При этом в критических ситуациях факторами, упорядочивающими реальность, оказываются такие плохо поддающиеся формализации сущности, как мораль, убеждения, нравственность, предшествующий опыт. При этом, в отличие от моделей точных наук, здесь многие величины могут меняться скачком. Это уровень доверия, ожидания, связываемые с будущим. В теории рефлексивного управления это было осознано давно.

Однако последние десятилетия обогатили теорию разнообразной практикой. В качестве примера можно привести технологии «организованного хаоса» – одни из самых эффективных методов финансовых спекуляций, по мнению упоминавшегося Дж.Сороса, которому в этом вопросе явно можно доверять. В самом деле, тот, кто осознал, что система уже находится в области джокера, получает большую фору перед теми, то еще думает, что «все идет нормально». Здесь и «стратегии с потерей непрерывности», которые все чаще применяются в международной жизни, когда абсурдные, нелогичные, не вытекающие из всего прошлого акции одних стран могут радикально изменить ситуацию и помочь им добиться своей цели малой ценой. Психологи называют это «эффектом Беттельхейма» – человек пытается увидеть логику противной стороны, как-то объяснить с разумных позиций происходящее, в то время как оно заведомо абсурдно и алогично. В представления теории русел и джокеров прекрасно укладываются PR-технологии, как их красиво называют журналисты, или технологии манипулирования сознанием, как их именуют социологи [18].

Суть дела прекрасно показана в американском фильме «Хвост виляет собакой», где для того чтобы замять скандал с правящим президентом, за несколько дней до новых президентских выборов нужно устроить имитацию маленькой победоносной войны. При этом совершенно неважно, что происходит на самом деле, важно лишь то, что увидят телезрители, которым предстоит голосовать. Чтобы заставить людей поступать вопреки своим достаточно очевидным интересам, нужно перевести их в «область джокера», дезориентировать, хотя бы временно, в том, что касается смыслов, ценностей, предпочтений, ожиданий. На какое-то время вместо одного русла, со своими параметрами порядка, в сознании возникает другое, именно то, на которое рассчитывают манипуляторы. Не надо объяснять читателю, насколько это важно, какой большой практический опыт здесь накоплен. Многие специалисты считают этот способ воздействия на общество информационное управление – главным в постиндустриальную эпоху [18].

И отечественные, и зарубежные синергетики не раз писали, что здесь представления теории самоорганизации могут оказаться исключительно важными. И мы с ними совершенно согласны. Собирались конференции, публиковались статьи, выдвигались исследовательские программы. И авторы этих строк, признаемся честно, не раз ко всему этому прикладывали руку. И все же следует признать, что здесь пока не хватает ни понимания, ни интересных моделей. Но мы надеемся, что у синергетики еще многое впереди. И вновь вернемся к началу этого раздела. А что, собственно, надо, чего не хватает? Да только одного по большому счету. И для понимания процессов и явлений, и для управления надо уметь выделять небольшое число параметров, определяющих их ход, и выявлять взаимосвязи между ними. Нужен системный синтез .

В самом деле, накопленный запас знаний и достигнутый современной наукой уровень позволяют сплошь и рядом выявлять детали, тонкости и частности, находясь в пределах любой научной дисциплины. Происходит анализ – расщепление, расчленение в изначальном смысле слова. И даже системный анализ – это тоже выделение отдельных свойств и качеств. Это все-таки анализ. В то же время нам, чтобы понять, что следует делать, нужно системное, целостное представление об объекте. Такова уж наша человеческая природа – мы не умеем активно оперировать сколько-нибудь большим числом переменных и взаимосвязей. При этом мы осознаем, что в разных ситуациях этот набор переменных будет разным (мы можем оказываться в пределах различных русел). Более того, в области джокера начинают в полную силу играть принципы, мораль, опыт и просто везение, и компьютер может тут нам помочь весьма немногим.

Является ли системный синтез чем-то принципиально новым или это всего лишь удачное слово для того, чем все всегда занимались? И да, и нет. К сожалению, такой ответ можно дать по поводу почти любой крупной научной идеи или программы. (Точно так же нелегко сказать, является ли дом чем-то принципиально новым по сравнению с фундаментом.) Да – потому что в науке за время ее существования накоплен огромный опыт упрощения и выделения главного. В математике – это огромный арсенал методов осреднения и других асимптотических подходов. В экономике это разнообразные методы агрегирования (о чем бы писали экономические журналы и спорили бы политики, не будь у нас огромного набора замечательных макроэкономических индексов?). Не будь конструкторских, инженерных, во многом интуитивных способов синтеза, сколько-нибудь сложных технических конструкций создать бы не удалось.

Громадный опыт сложного многоуровневого синтеза накоплен в программировании. Благодаря такому синтезу создавались и совершенствовались различные организации. Этот список можно продолжить. Нет – потому что синергетика помогла подойти к системному синтезу как к одной из важнейших черт живых систем, нашего сознания. Она поставила вопрос – как происходит этот важнейший процесс самоорганизации в пространстве признаков, возможностей, степеней свободы? Чудо, пока не доступное компьютерам, состоит в том, что человек может почувствовать или осознать, «нравится» ему что-то или нет. По-видимому, интересно было бы понять, существуют ли универсальные методы системного синтеза, «подсмотреть» их у природы и далее использовать в компьютерных системах.

Синергетика уже научилась в простых ситуациях выделять параметры порядка и искать «русла» и учится сейчас работать с джокерами, с механизмами перехода от одних русел к другим. Готовых универсальных рецептов тут пока нет и их надо искать. Где нужен системный синтез? Таких задач очень много, и мы приведем только несколько очевидных примеров, показывающих важность этого подхода. Первый пример можно назвать выбором стратегии. Сейчас очень популярна концепция устойчивого развития. Ее можно провозглашать, говорить о ней общие слова, чем мировое сообщество и наш истеблишмент давно и с удовольствием занимаются. Но, как выразился один известный экономист, «экономика букв не знает и читать не умеет». Что в экономике-то надо делать? В социальной сфере?